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Fig. 1: Optimizing robot behavior control from high-level task commands using self-awareness. Given an instruction by
an operator, the robot generates multiple potential behaviors to accomplish the task, evaluates them based on its capabilities
and limits, and selects the most suitable one to execute. This work introduces a motion adaptation with a Self-AWare model
(SAW) to anticipate how well a robot can follow a given reference by ranking multiple potential behaviors and choosing
the optimal one. For instance, in a scenario with three potential actions—walking, running, and jumping—the robot assesses
each option and determines that walking is the most appropriate. Consequently, the robot walks to the person and says, ”Hi.”
In this image, the generated references are shown by orange robots, while the robot’s behavior when attempting to follow
them is depicted in blue. Note that the reference motions are fixed just for visualizations, and do not consider gravity.

Abstract— As humanoid robots transition from labs to real-
world environments, it is essential to democratize robot control
for non-expert users. Recent human-robot imitation algorithms
focus on following a reference human motion with high pre-
cision, but they are susceptible to the quality of the reference
motion and require the human operator to simplify its move-
ments to match the robot’s capabilities. Instead, we consider
that the robot should understand and adapt the reference
motion to its own abilities, facilitating the operator’s task. For
that, we introduce a deep-learning model that anticipates the
robot’s performance when imitating a given reference. Then,
our system can generate multiple references given a high-
level task command, assign a score to each of them, and
select the best reference to achieve the desired robot behavior.
Our Self-AWare model (SAW) ranks potential robot behaviors
based on various criteria, such as fall likelihood, adherence to
the reference motion, and smoothness. We integrate advanced
motion generation, robot control, and SAW in one unique
system, ensuring optimal robot behavior for any task command.
For instance, SAW can anticipate falls with 99.29% accuracy.
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I. INTRODUCTION

Imagine a world where bipedal robots walk among us,
mimicking human movements and behaviors with remark-
able precision. Such robots could revolutionize industries
ranging from healthcare to disaster response, offering unpar-
alleled assistance and efficiency. However, teaching robots
how to robustly imitate human behaviors is very challenging,
especially for bipedal robots. Recent works [1]–[7] have
shown promising potential by training a robot to imitate a
given human reference using goal-conditioned reinforcement
learning (RL) [8]. However, exactly following a human
reference motion might fall out of the robot’s capabilities.
To address this issue, previous works filtered out unfeasible
motions and limited the commanded behaviors to upper body
movements [1], [2] or one specific task [3]–[6]. However,
this strategy presents two main problems: (a) Should the
human operator adapt its reference behavior to the robot’s
abilities and constraints? (b) How can robots handle dy-
namic motions that are out of their expertise? This paper
is motivated to answer those questions by doting the robots
with self-awareness: the ability to understand any motion



command and adapt it according to their own limitations
and capabilities.

As humans, we inherently possess self-awareness, which
helps us recognize our physical and cognitive boundaries.
For instance, a novice parkour enthusiast understands that
attempting a high-risk maneuver without sufficient skill can
lead to injury. This self-awareness guides them to modify
their actions, opting for safer, more manageable moves until
they gain more experience and confidence. Similarly, self-
awareness in robots is equally important to ensure safety, ef-
ficiency, and high task performance. Without it, robots might
blindly try to imitate human motions without considering
their own physical constraints, leading to falls, collisions,
or mechanical damage. In fact, self-awareness should also
entail the robot’s expertise: a robot might be able to jump
with one leg, but still has not learned how. Therefore,
during execution, the robot should ideally explore how to
move like a human jumping with one leg and adapt its
movement based on its own capabilities. By incorporating
self-awareness, robots can assess their capabilities and make
informed decisions, preventing actions beyond their abilities,
as shown in Fig. 1. In this paper, we reformulate this
adaptation problem by first generating potential movements
and later selecting the most optimal according to the current
situations and robot expertise and limitations.

In fact, this area of developing intelligent embodied sys-
tems that understand their own limitations has already been
explored in the past. Prior works have considered physical
self-awareness by predicting whether a robot will fall in the
near future [9]–[14]. The main goal of these works is to avoid
falls by adjusting its motion before high disturbances are
encountered. Both model-based [9], [10] and learning-based
approaches [11]–[14] have been considered for the task of
fall prediction. For instance, [13], [14] used deep-learning
strategies to anticipate falls from the last observed robot
states. However, all learning-based methods generated the
training data using model-based controllers that were limited
to simple movements, such as standing [14] or walking
[13]. They collect the falling examples by applying exter-
nal force perturbations to the robot’s torso in a simulator.
Consequently, their fall prediction approach was limited to
very specific tasks (i.e., walking) and did not generalize
to diverse human behaviors. On the contrary, this work
proposes a system that understands the robot’s capabilities
when imitating any human reference provided, even high-
dynamic movements such as backflips or handstands. We
envision a general approach that allows a robot to imitate
any human and any behavior commanded if it knows how
or adapt the movement to its own expertise.

Moreover, instead of just predicting a robot’s potential fall,
we anticipate how good a robot’s imitation will be given
a human reference. For that, we introduce a Self-AWare
model, shorted as SAW, that infers a score to inform a
robot on how smooth, safe, and faithful a robot’s behavior
will be if it decides to follow a human reference motion.
Additionally, by integrating SAW with a real-time text-to-
motion generator, such as MotionLCM [15], we can adapt

the human’s reference so that the robot imitates the high-level
task commanded but improving the quality of the generated
behavior. SAW can be used to generate and rank diverse
potential robot behaviors and select the most adequate in
advance, ensuring an optimal imitation. In conclusion, our
efforts resulted in the following contributions:

1) A transformer-based model to anticipate the robot’s
performance when following any human motion given
as reference.

2) A pipeline to optimize the robot’s behavior, prevent
falls, and enable non-expert users to control a bipedal
robot using text or trajectory commands.

II. RELATED WORKS

This section reviews the existing literature on robots
imitating diverse human behavior, focusing on recent ad-
vancements and identifying current limitations. This analysis
underscores the importance of integrating physical self-
awareness in robots to facilitate their effective deployment
in real world-applications.

A. Imitation Learning

As robots are increasingly utilized in more complex and
unstructured environments, manually preprogramming their
behavior or defining it through reward functions is becoming
exceedingly difficult [16], [17]. Instead, imitation learning
(IL) provides an avenue for teaching robots a desired behav-
ior by simply demonstrating it. During the learning process,
robots are provided with a dataset of expert demonstrations,
and the goal is either to replicate them by mapping the
observed states to actions, known as behavior cloning (BC)
[18], or to understand the underlying reward functions behind
the expert’s behavior with inverse RL (IRL) [19]. While
IRL provides a more robust solution, its learning process
is computationally more expensive and has lately struggled
to scale to larger environments and replicate expert behaviors
compared to BC [19]. In fact, BC has the advantage of being
more efficient, as merely follows a traditional supervised
learning task, but might suffer from a covariate shift problem
[20]. This problem arises due to the bias induced during
training where the state distribution is led by an expert, while
in testing the state is induced by its action [21]. Different
attempts [18], [22], [23] have focused on solving the covari-
ate shift problem, either by incorporating the human expert
in the loop [18] or by limiting the agent actions to be in
the distribution covered by the expert demonstrations [23].
For instance, [23] learned to detect states that could lead
to failures, and encourage BC to shift to known states. In
fact, our work shares some common beliefs with [23] where
anticipating potentially unstable states is crucial for ensuring
optimal behaviors during BC, but we differ in nature. While
[23] constraints the agent policy to be in the distribution
of the expert demonstrations, we adapt the policy to the
expertise of the agent itself. Our work builds upon behavior
cloning but relaxes the imitation process, where the agent
should perform a task optimally in its own domain. One
similar motivation is proposed in [24], where the goal is to



overcome discrepancies between agent embodiments without
forcing a shared latent domain.

B. Human Imitation in Bipedal Robots

Imitating human motion is no trivial task, especially for
bipedal robots. Traditional methods in robot motion planning
often rely on pre-defined movement patterns and control
algorithms [25], [26] inspired by human movements. These
methods, though effective in controlled environments, strug-
gle to adapt to the unpredictability of real-world settings. The
lack of flexibility in these approaches results in robots that
can perform specific tasks but fail when faced with novel or
dynamically changing situations.

Reinforcement Learning (RL) has emerged as a powerful
technique to address these limitations of traditional methods,
showing high performance in animated characters [27]–
[29], quadruped robots, [30], [31] and recently in bipedal
humanoids [1]–[7]. All these approaches tackled behavior
cloning through goal-conditioned RL [8], where a robot is
trained to replicate a given human reference while consider-
ing environmental and physical constraints. For instance, [3],
[4] focused on training an RL agent to follow either velocity
commands or jumps, respectively, and performed zero-shot
transfer to a real Cassie robot. To gain more fine-grained
control over the robot’s behavior, [5], [6] designed extensive
rewards to overfit a policy for specific tasks in a bipedal hu-
manoid robot. However, the ultimate goal of robot imitation
is to enable a humanoid to follow any human demonstration,
independent of its complexity and diversity. To address this
task, [1], [2] focused on only imitating the upper-body part
to account for more expressive robot behaviors, but only
controlled the robot legs to ensure motion feasibility. Instead,
I-CTRL [7] focused on whole-body humanoid imitation
and showcased high performance in four different bipedal
robots, generalizing over 10.000 different motions. For that,
I-CTRL constrained the exploration phase during learning so
that the produced physics-based behavior only modified the
retargeted human reference within a defined margin, ensuring
a highly visual resemblance.

However, all the aforementioned works focused on blindly
following a reference human motion with high precision,
which could lead to falls or non-smooth behaviors when the
intended reference behavior exceeds the robot’s capabilities.
In fact, previous works filter out complex human behaviors
(i.e., remove high jumps, backflips, ...) [2], [6], [7], so
that their generated behavior underperforms for complex
reference motions, leading to falls. To overcome this issue,
we propose to anticipate the resulting robot behavior of a
trained policy when given a human reference. If a robot
is aware that a commanded motion is out of its expertise
and might lead to falls or poor imitation, the robot can
decide to relax the reference motion constraints and further
explore new reference behaviors that might lead to better
performance. We described this ability as physical self-
awareness, which refers to the robot’s understanding of its
own limitations and capabilities and enables the robot to
make informed decisions.

C. Self-Awareness in Robotics

Psychologists describe self-awareness as the ability to
become the object of one’s attention [32], which entails a per-
son’s knowledge of themselves. This capability significantly
influences human motivations, decisions, and intentions [33],
either at the cognitive or physical level. For instance, [33]
states that when a human performs a movement, their ac-
tion awareness is unconsciously monitoring discrepancies
between the planned movement and the current state. If this
error becomes significant, this awareness alerts a higher-level
cognitive system to correct and replan this movement. Our
work is inspired by this physical self-awareness and attempts
to design a similar system for robots. Our developed Self-
AWare model (SAW) continuously monitors discrepancies
between the planned movements, the human references, and
the current robot states. If SAW anticipates a potential
discrepancy, such as a fall or a wrong robot imitation, our
system proposes to replan the movement by consciously
reasoning about the robot’s limitations and capabilities.

In fact, preventing falls in robots, which can be considered
as a subarea among physical self-awareness, has already
been explored in the past. Early efforts focused on avoiding
falls when small disturbances occurred using stabilizing
controllers [34], [35]. However, when dealing with large
disturbances, a robot requires more time to adjust its motion
to avoid falling. Therefore, [9], [10] proposed to anticipate
and prevent falls using model-based approaches. [9] used
a stand space inverted pendulum model for fall prediction,
while [10] modified the zero moment point (ZMP) for a
simplified multi-rigid body model to predict falls in humans.
Despite some advancements, these methods often oversim-
plify fall prediction by making assumptions that limit the
robot’s behavior to specific motions.

To address these limitations and build models that can
better adapt to uncertainties, learning-based approaches were
proposed [11]–[14]. [11], [12] hand-crafted robot state fea-
tures to predict falls. Later, [13] inferred the likelihood
of falling using a bidirectional Long-Short Term Memory
(BiLSTM) network, which processed the evolution of robot
sensor measurements such as the center of mass (CoM),
the center of pressure (CoP) and the linear and angular
momentum and its derivative. More recently, [14] adopted a
1D convolutional neural network (1D-CNN) with the same
goal. However, these learning-based methods generated the
training data using model-based controllers that were limited
to simple movements, such as standing [14] and walking
[13]. Consequently, their approach did not generalize to more
diverse human behaviors a robot might want to imitate.
On the contrary, we use I-CTRL [7] to generalize our
SAW model to more complex and diverse motions, such
as dancing, walking, running, and jumping. Moreover, and
contrary to prior works [11]–[14] that only focus on the
observed robot states to predict falls, we incorporate the
reference human motion to imitate as input to our model. For
instance, when a bipedal robot imitates a human performing
a high jump, the robot’s self-awareness can recognize that the



Fig. 2: Overview of our system for optimal robot behavior generation from high-level task commands with self-
awareness. Upon a high-level instruction, given as trajectory or natural language description, we generate a human reference
Hr for the robot to follow using MotionLCM [15]. Then, at each time horizon t, we assess the feasibility of the next future
poses Rt

f to follow and optimize the robot behavior using the motion adapter module (shown in the gray center box). For
that, MotionLCM is used first to generate potential new references with similar root trajectories and/or textual commands.
Those references are retargeted to robot motions using ImitationNet, obtaining [R̂t

f,1, · · · , R̂t
f,n]. Our Self-AWare model (SAW,

depicted in the light box on the right) ranks each edited references R̂t
f,i according to the robot’s learned capabilities and the

current robot states R̂t
o. Thus, SAW infers a score vector ŝt

i that describes how well the robot can follow a given reference
i at time t, and that can be summarized using a weighted sum to a single scalar per reference. The motion adapter then
chooses the best reference and forwards it to I-CTRL [7], which transfers this new reference to real robot commands R̂t

p.

skill is out of its limits and adapt the behavior to perform a
simpler jump that is feasible with the current abilities. Note
that this prevention formulation differs from prior works on
quadruped robots [36] or small bipedal robots [37] that train
a specific policy for fall recovery, where the robot has already
fallen. In our case, by accurately knowing the robot’s limits
and anticipating potential failures in advance, we can replan
the robot’s behavior to be optimal while remaining as close
as possible to the intended movement.

III. METHODOLOGY

This section is structured as follows. First, we introduce
the task of robot behavior generation and control from high-
level commands with self-awareness. Then, we present our
motion adaptation system with the Self-AWare model (SAW)
to tackle this task, which is illustrated in Fig. 2.

A. Problem Formulation

We envision the control of bipedal robots using high-level
task commands (c), such as natural language descriptions
or root trajectories. Instead of directly translating those
commands to robot signals, we opted for using the human
embodiment as a bridge and defining the task as an imitation
problem. Therefore, our first subtask is to translate those
high-level task commands c to an appropriate human motion
Hr, which will serve as the reference for the robot to imitate.

For that, we adopt a pre-trained MotionLCM [15] as a text-
to-motion generation model f , where ( f : c 7−→ Hr). Our
second subtask is to translate this human reference Hr to
a physics-based robot movement Rp, such as (g : Hr 7−→
Rp). In fact, we attain the description of g as presented
in [7], where first a human-to-robot retargeting module gh2r
translates a human reference Hr to a robot reference Rr, only
considering visual resemblance between the embodiments,
and then a pre-trained RL module gr2p refines Rr to ensure
plausibility under the real-world physics, generating Hp.
Following [7], we define gh2r as ImitationNet [38] and gr2p
as I-CTRL [7].

However, due to the differences between kinematics and
dynamics between humans and robots, as well as the error
accumulation from ensembling multiple modules ( f , gh2r and
gr2p), the resulting Rp might largely deviate from Hr. Thus,
we design a Self-AWare model (SAW) that learns how g
performs under different human references Hr, and slightly
adapts those references motions Ĥr to achieve an optimal
robot behavior that still satisfies the task command c.

Note that, given the use of multiple pre-trained models ( f
is MotionLCM, gh2r is ImitationNet and gr2p is I-CTRL),
Hr, Rr, and Rp are represented differently. A human motion
Hr ∈ RT×J×3 is represented as a sequence of T human
poses, where each pose is defined as J joints in Cartesian
representation. On the contrary, Rr ∈ RT×Dr includes the



root position pt ∈ R3 and orientation θ
t ∈ R4 in quaternion,

as well as the robot joint angles qt ∈ RS, so that D =
3+ 4+ S. Similarly, Rr ∈ RT×Dr+S also includes the robot
joint velocities q̇t ∈ RS.

B. Motion Adaptation

We consider the motion adaptation task as finding a new
human reference Ĥr that ensures optimal robot behavior
Rp while still resembling the original reference Hr and the
task command c. Our reference adaptation block utilizes
the last To observed robot states Rt−To:t

p = [rt−To
p , · · · ,rt

p] to
ensure that the new references are feasible with the current
robot state, simplified as Rt

o, and the subsequent Tf human
reference poses Ht:t+Tf

r = [ht
r, · · · ,h

t+Tf
r ] which we aim to

adapt, simplified as Ht
f, where t represents the current time.

We define the motion adaptation similarly to a brainstorm-
ing process, where we first generate a set of n modified
reference motions [Ĥt

f,1, · · · ,Ĥt
f,n], and then we rank those

potential motions to select the most optimal Ĥf,i according
to the robot feasibility. For that, we employ MotionLCM [15]
which allows joint and trajectory-level editing and can ensure
that the edited reference motions start from the current pose
ht

r and closely approximate to ht+Tf
r and its root trajectory.

An example of this behavior is shown in Fig. 3.
Later, we convert those edited references to robot refer-

ences [R̂t
f,1, · · · , R̂t

f,n] using ImitationNet [38]. Finally, each
edited reference R̂t

f,i generated is then processed by SAW
alongside the observed robot states Rt

o, inferring a score
ŝt

i that informs on how optimal a reference R̂t
f,i is. By

calculating a score ŝt
i for each edited reference Rt

o, we
can rank and select the most suitable option that prioritizes
avoiding falls and then optimize the quality of robot behavior.
This chosen reference is followed until the SAW module
identifies a better alternative for I-CTRL to guide the robot’s
actions. An overview of this process is shown in Fig. 2.

C. Self-AWare model (SAW)

This section provides a thorough description of our deep-
learning-based Self-AWare model (SAW) for evaluating ref-
erence motions for optimal robot control. SAW is designed
based on two main ideas: a robot’s behavior might lead to
failure as the current robot state is already not adequate
or if the reference is unfeasible for the current situation.
Therefore, we first encode the reference motion R̂t

f,i and
the observed robot states Rt

o using individual multi-layer
perceptrons (MLPs), which leads to Et

f,i and Et
o respectively.

Next, we make use of the attention mechanisms [39] to
summarize both sequences. For that, we append a learnable
class token cls [40] to the Et

o to aggregate all motion infor-
mation during the transformer process. We add a sinusoidal
positional embedding to Et

o and forward it to a self-attention
transformer model to learn the temporal relationships of the
observed robot states, embedded as Êt

o. Finally, we condition
this representation with the planned reference motion Et

f,i us-
ing cross-attention. Following [40], we extract the appended
ĉls token from the cross-attention output which represents

Fig. 3: Example of our Top-5 ranked edited motions
given commanded human reference using our motion
adaptation. Here, the motion in orange is the original
reference Hr, while in blue, we show Top-5 edited references
[Ĥt

f,1, · · · ,Ĥt
f,5] at different times. Note that, as SAW predicts

a high likelihood of falling for the ‘standing with one leg’
for a long time, it tends to place the leg down and start
‘walking’, as instructed by the high-level task command.

the expected robot behavior in the future if imitating the
provided reference motion. ĉls is then projected to a score
vector ŝt

i that assesses factors such as the likelihood of falling
( f̂ all), the smoothness of the generated robot’s behavior
(Âq̈), and the alignment of joint angles (Âq), joint velocities
(Âq̇), and root position (Âp) and orientation (Âθ ) with the
reference. We define alignment as the mean square error
between the reference state and the generated robot state,
and smoothness as low robot joint accelerations (no jittering).
Thus, a predicted score s = [ f̂ all, Âq, Âq̇, Âq̈, Âp, Âθ ] ∈ R6.

IV. EXPERIMENTS

A. Dataset generation

To train the SAW model effectively, we automatically
generate a dataset that accounts for the robot’s ability to
accurately mimic real-world motions. This involved synthe-
sizing 100,000 human motion references using MotionLCM,
incorporating 10,000 diverse textual annotations, with motion
durations ranging from 3 to 12 seconds. For each reference,
we simulated three unique JVRC-1 robot behaviors [41]
using I-CTRL within the IsaacGym simulator, culminating
in a comprehensive dataset of 300,000 robot behaviors. To
ensure a fair evaluation, in our validation and testing dataset,
the robot falls in half of the motions. Our SAW module
observes 0.5 seconds in the past to score the reference of
the next 1, 2, or 3 seconds.

B. Metrics

To evaluate our SAW module we make use of simple
mean-square error metrics between the predicted and ground-
truth alignment scores (Âq, Âq̇, Âp, Âθ ). We also use accuracy
as a metric to assess the falling prediction ability of SAW.
Note that a robot is considered to have fallen when the root



Future Horizon Fall Accuracy. (%) ↑ Smoothness Error (Aq̈) ↓ Aq Error ↓ Aq̇ Error ↓ Ap Error ↓ Aθ Error ↓

w/o R f 1 97.70 0.093 0.0252 7.232 0.1136 0.0477
w/o Ro 1 99.16 0.080 0.0396 5.760 0.1008 0.0225
w/o C.A. 1 99.14 0.074 0.0162 5.320 0.0944 0.0231
SAW* 1 99.28 0.076 0.0156 5.248 0.0992 0.0207
SAW 1 99.29 0.070 0.0144 4.592 0.0928 0.0066

SAW 2 99.17 0.057 0.0144 4.016 0.0976 0.0228
SAW 3 99.20 0.043 0.0126 4.000 0.1024 0.0261

TABLE I: Quantitative evaluation of SAW for score prediction. The first section showcases the benefits of SAW over other
variants in the architecture. The second section showcases the robustness of SAW over longer future horizons.

height of the robot is lower than a predefined threshold,
following the definition from [7].

C. Robot

In this work, we demonstrate the benefit of self-awareness
on the JVRC-1 robot [41]. This robot has 23 DoFs with a
height of 140 centimeters and a weight of 62.2 kilograms.

D. Quantitative and Qualitative Evaluation

Due to the absence of existing benchmarks for score
prediction, we conducted an ablation study to assess (a)
different variations of our proposed architecture, and (b)
different future horizons in which we anticipate the robot’s
behavior. The results in Table I showcase the high accuracy
of SAW in predicting if a robot will fall (≈ 99%), as well as
the high precision in determining the quality of the generated
motion across multiple horizons.

First of all, we observe that when only considering the
observed robot states (w/o R f ), SAW underperforms when
predicting the alignment of the robot with the reference, as
expected. Likewise, when SAW only considers the reference
motion (w/o Ro), it can not ground the expected behavior
to its current state, thus also failing to correctly predict an
alignment. Later on, we evaluate two modifications on how
to integrate R f and Ro for the score prediction. First, we
consider one independent self-attention block per sequence
and compute the score from the concatenation of the ĉls
token from both sequences (w/o C.A.). Secondly, we inverted
the sequences in the computation, such as the self-attention
is computed over the reference and later conditioned on Eo.
Both variants achieve higher alignment errors and lower fall
prediction accuracy. In general, we observe that the observed
motion Ro has a higher influence on the future robot behavior
quality rather than R f , as also shown in SAW w/o R f .

Additionally, we evaluated the performance of SAW over
longer future horizons (from 1 second to 3 seconds) as
reported in Table I, which showcases that we can still
predict falls with high accuracy with low error in the robot
performance behavior. We observed that the anticipation
of the smoothness and joint angle and velocity alignment
is independent of the future horizon, but rather depends
strongly on the reference motion to follow. On the contrary,
it is harder to anticipate the root alignment the longer the
future horizon.

Finally, we evaluated the overall system when the original
robot’s behavior (without self-awareness) was falling. Fig. 4

showcases the benefit of SAW when commanding motions
out of the robot expertise. In general, our results demonstrate
that our motion adaptation system can prevent 62% falls
while still following the same root trajectory.

E. Limitations and future work

Despite our SAW module’s high performance in predicting
the quality of the robot’s motion when following a given
reference (≈ 99%), the end-to-end system only prevents 62%
of falls during tasks. We recognize that simply stopping
the robot’s motion and avoiding complex motions when a
fall is anticipated could address these issues. However, this
approach would prevent the robot from following the original
commands of the human operator which was part of the
scope of the motion adapter. Our analysis indicates that
the primary cause of the system’s limited fall prevention
is the noisy reference motions generated by MotionLCM
when conditioned on prior poses. These noisy references
can lead to abrupt changes that I-CTRL cannot effectively
predict. Additionally, we currently generate only 15 reference
motions and rank the robot’s choices among them. Increasing
this number to 30 or 50 would provide greater diversity, giv-
ing SAW better options to choose from, thereby potentially
improving fall prevention.

V. CONCLUSION

Controlling any robot with high-level task commands
often requires operators who understand the capabilities
of the robots and limit the command accordingly. Instead,
we propose to provide robots with self-awareness so that
they can autonomously adjust the commanded instruction to
their own ability. Our end-to-end system converts natural
language and trajectory instructions into a human motion
reference for the robot to follow. To mitigate the risk of poor
robot performance due to strict adherence to commands, we
introduce the Self-AWare model (SAW). Our SAW module
is able to anticipate a fall with ≈ 99% accuracy at different
future horizons, and rank different references with high
precision. Finally, we extend our self-awareness model with a
motion adapter system that enables the robot to intelligently
select the optimal reference motion according to the current
robot states and capabilities, enhancing performance and
preventing falls.



Fig. 4: Robot behavior comparison between using self-awareness (in dark and light blue) or not (in yellow and
brown). Given a textual command, we use MotionLCM [15] to generate a human reference, which we retarget to a JVRC-1
kinematics using ImitationNet [38] to obtain a reference robot motion. Then, I-CTRL [7] is used to refine this robot reference
(in yellow) to conform with real-world physics (in orange). However, if our SAW model anticipates poor imitation (i.e.,
falls), we adapt the reference motion to prevent wrong behaviors. For that, we use MotionLCM+ImitationNet to generate
various new robot reference motions (in dark blue) and SAW selects the more appropriate, which we then command to
I-CTRL to optimize the robot behavior (in light blue) to follow the initial commands (described here by text). Note that tk
indicates different time instants of the motion sequences.
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