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Abstract— In recent years, advanced model-based and data-
driven control methods are unlocking the potential of complex
robotics systems, and we can expect this trend to continue at an
exponential rate in the near future. However, ensuring safety
with these advanced control methods remains a challenge. A
well-known tool to make controllers (either Model Predictive
Controllers or Reinforcement Learning policies) safe, is the so-
called control-invariant set (a.k.a. safe set). Unfortunately, for
nonlinear systems, such a set cannot be exactly computed in
general. Numerical algorithms exist for computing approximate
control-invariant sets, but classic theoretic control methods
break down if the set is not exact. This paper presents
our recent efforts to address this issue. We present a novel
Model Predictive Control scheme that can guarantee recursive
feasibility and/or safety under weaker assumptions than classic
methods. In particular, recursive feasibility is guaranteed by
making the safe-set constraint move backward over the horizon,
and assuming that such set satisfies a condition that is weaker
than control invariance. Safety is instead guaranteed under
an even weaker assumption on the safe set, triggering a safe
task-abortion strategy whenever a risk of constraint violation
is detected. We evaluated our approach on a simulated robot
manipulator, empirically demonstrating that it leads to less
constraint violations than state-of-the-art approaches, while
retaining reasonable performance in terms of tracking cost and
number of completed tasks.

I. INTRODUCTION

Ensuring safety is crucial in all robotics applications.
However, this is more and more difficult with the recently
increasing complexity of control methods and robotic plat-
forms. Indeed, recent data-driven approaches, often rely-
ing on Reinforcement Learning (RL) algorithms, typically
produce black-box policies that are inherently hard to cer-
tify as safe. Moreover, even model-based control methods
for constrained nonlinear systems in practice struggle to
guarantee safety, which consists in recursive constraint sat-
isfaction (a.k.a. recursive feasibility). This is because the
classic approach to guaranteeing safety, both for Model
Predictive Control (MPC) and for Quadratic-Programming-
based control methods, relies on the assumption of knowing
a so-called safe set (a.k.a. control-invariant set) [1], [2], or
a Control Barrier Function (CBF) [3], [4]. However, exactly
computing safe sets (or CBFs) for nonlinear systems is not
feasible in general. Therefore, practitioners must rely on
numerical methods to compute approximate versions of such
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sets (or functions) [5]–[12]. Unfortunately, safety guarantees
are lost if the used safe set is not exact.

In this paper, we present a novel MPC scheme that
ensures: i) safety, assuming the safe set is a conservative
approximation of a specific backward reachable set; ii)
recursive feasibility, assuming the safe set is N-step control
invariant, which is a weaker assumption than classic control
invariance. We compared our approach with classic MPC
schemes: the standard formulation (without terminal con-
straints but a longer horizon), and a formulation using the
safe set to constrain the terminal state. Our method could
successfully avoid constraint violation in more tests than
the others, being able to trade off performance and safety
depending on the conservativeness of the used safe set.

II. PRELIMINARIES

A. Notation

• N denotes the set of natural numbers;
• {xi}N0 denotes a discrete-time trajectory given by the

sequence (x0, . . . , xN );
• xi|k denotes the state at time step k+ i predicted when

solving the MPC problem at time step k;

B. Problem statement

Let us consider a discrete-time dynamical system with
state and control constraints:

xi+1 = f(xi, ui), x ∈ X , u ∈ U . (1)

Our goal is to design a control algorithm to ensure safety
(i.e., constraint satisfaction), while preserving performance
(i.e., cost minimization) as much as possible. Let us define S
as the set containing all the equilibrium states of our system:

S = {x ∈ X | ∃u ∈ U : x = f(x, u)}. (2)

To achieve our goal, we rely on the Infinite-Time Backward-
Reachable Set [1] of S, which we denote as V . Mathemati-
cally, it is defined as the subset of X starting from which it
is possible to reach S in finite time:

V ≜ {x0 ∈ X | ∃{ui}k0 , k ∈ N : xk+1 ∈ S, xi ∈ X ,

ui ∈ U ,∀ i = 0, . . . , k}.
(3)

As all backward reachable sets of equilibrium states, the set
V is a control-invariant set [1]. This means that, starting from
inside V , it is possible to remain inside V indefinitely. If
we knew V we could use it to construct a safe controller.
However, we cannot reasonably assume to know it in general,
but we rely instead on a more realistic assumption.
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Assumption 1. We know a conservative approximation of
the set V:

V̂ ⊆ V (4)

Note that V̂ is not control invariant in general.

Assumption 2. We know an upper bound on the number of
time steps needed to safely drive the system to an equilibrium
from a state in V̂ , which we refer to as N̄ .

As discussed in Section I, numerical methods exists to
compute approximations of V . Among the others, the method
in [12] can be made conservative by an appropriate choice
of a safety margin and it also produces an estimate of N̄ ,
satisfying Assumption 2. Therefore, we used [12] in our
evaluation. Now we discuss different approaches to exploit
V̂ in an MPC formulation to try to achieve safety.

C. Model Predictive Control and Recursive Feasibility

Let us consider the following MPC problem:

minimize
{xi}N

0 ,{ui}N−1
0

N−1∑
i=0

ℓi(xi, ui) + ℓN (xN ) (5a)

subject to x0 = xinit (5b)
xi+1 = f(xi, ui) i = 0 . . . N − 1 (5c)
xi ∈ X , ui ∈ U i = 0 . . . N − 1 (5d)
xN ∈ XN , (5e)

where ℓ(·)/ℓN (·) is the running/terminal cost, xinit is the
current state, and XN ⊆ X is the terminal set [13].

Even though MPC is one of the most suited frameworks
for controlling constrained systems, ensuring safety (i.e.,
constraint satisfaction) remains challenging when the dy-
namics or the constraints are nonlinear. The most common
approach to ensuring safety is based on recursive feasibility
(RF), which guarantees that, under the assumption of no
disturbances/modeling errors, if an MPC problem is feasible
at the first loop, it remains feasible forever.

RF is guaranteed if the MPC horizon N is sufficiently long
(see Section 8.2 of [2]). However, in general we cannot know
how long N should be. Moreover, even if N were known, it
may be too long to result in acceptable computation times.

Alternatively, RF can be guaranteed by using the terminal
set XN to constrain the final state inside a control-invariant
set (see Section II-D). While theoretically elegant, the prac-
tical issue with this approach is that control-invariant sets
are extremely challenging (if not impossible) to compute
for nonlinear systems/constraints. A special case of this
approach is when an equilibrium state (or a set of equilibria)
is used as terminal set. This solves the issue of computing
control-invariant sets, but at the price of (potentially drasti-
cally) reducing the basin of attraction of the MPC.

Other approaches to RF exist that rely on the optimality
properties of the solution and the stability of the closed loop
(e.g., Section 8.3 of [2]). However, these approaches require
controllability and other conditions on running and terminal
costs. Therefore, they are not applicable to arbitrary cost
formulations as the methods discussed in this paper.

D. Terminal Constraint

As discussed above, a common way to ensure recursive
feasibility in MPC is to constrain the final state inside a
control-invariant set, such as V . Unfortunately, we do not
know V , but only V̂ , which is not control invariant in general.
Therefore, using V̂ as terminal set in our MPC does not
ensure RF. This means that our MPC problem could become
unfeasible, and at that point classic MPC theory does not tell
us what to do. A common strategy to deal with unfeasibility
is to relax the terminal constraint with a slack variable, which
is heavily penalized in the cost function [14], [15]. In this
way, when the terminal constraint cannot be satisfied, we
can still get a solution that allows us to keep controlling the
system, in the hope that eventually the terminal constraint
be satisfied again. However, this approach does not ensure
safety, nor RF, because the soft constraint allows the state to
leave V̂ , which eventually can lead to constraint violations.

III. SAFE MODEL PREDICTIVE CONTROL

This section describes our novel MPC scheme, which
relies on two components: a safe task-abortion strategy
(Section III-A, and a receding-constraint MPC formulation
(Section III-B), which can be used together (Section III-C).

A. Safe Task Abortion

Our key idea to ensure safety relies on Assumption 1 and
2, and on the following two assumptions.

Assumption 3. We have access to two computational units,
which we refer to as unit A and unit B.

Assumption 4. We can solve the following OCP for any
xinit ∈ V̂ , in at most N − 1 time steps:

minimize
{xi}N̄

0 ,{ui}N̄−1
0

N̄−1∑
i=0

ℓi(xi, ui) + ℓN̄ (xN̄ )

subject to (5b), (5c), (5d)
xN̄ = xN̄−1,

(6)

The choice of the cost function is irrelevant, and can simply
be used to help the solver to converge faster.

OCP (6) can be used to find a feasible trajectory to reach
an equilibrium state from xinit. Now we can describe our
strategy to safely abort the task in case we detect a risk of
constraint violation. Let us assume that we are using a classic
MPC formulation with terminal constraint xN ∈ V̂ , and that
at the MPC loop k our problem becomes unfeasible. In this
situation, we can follow these steps to safely abort the task:

1) unit A uses the MPC solution computed at loop k− 1
to reach the terminal state xN |k−1 ∈ V̂;

2) in parallel, unit B solves OCP (6), using xN |k−1 as
initial state;

3) after reaching xN |k−1, we follow the solution of
OCP (6) to safely reach an equilibrium state.

This strategy allows us to reach a safe equilibrium state,
where a stabilizing controller can be used to maintain the
system still. Actually, we do not need to abort the task as



Algorithm 1 Terminal-Constraint MPC with Safe Abortion
Require: Number of time steps T , Initial state x0, Initial guess
{xg

i }
N
0 , {ug

i }
N−1
0 , OCP (5), Safe-abort OCP (6)

1: fails← 0 ▷ Counter for failed OCP’s
2: for t = 0→ T − 1 do
3: {x∗

i }N0 , {u∗
i }N−1

0 , feas← OCP(xt, {xg
i }

N
0 , {ug

i }
N−1
0 )

4: if feas = True then ▷ If OCP’s solution is feasible
5: fails← 0 ▷ Reset counter
6: else
7: if fails = 0 then ▷ Start solving (6) in Unit B
8: SOLVESAFEABORTOCP(xg

N−1)

9: if fails = N − 1 then ▷ Abort task
10: return FOLLOWSAFEABORTTRAJECTORY()
11: fails← fails+ 1 ▷ Increment counter
12: {x∗

i }N0 , {u∗
i }N−1

0 ← {xg
i }

N
0 , {ug

i }
N−1
0 ▷ Copy last

feasible solution
13: xt+1 ← f(xt, u

∗
0) ▷ Simulate system

14: {xg
i }

N−1
0 , {ug

i }
N−2
0 ← {x∗

i }N1 , {u∗
i }N−1

1

15: xg
N , ug

N−1 ← xg
N−1, u

g
N−2

soon as one MPC problem becomes unfeasible. While we
follow the last feasible solution, we can keep trying to solve
OCP (5). This strategy is summarized in Alg. 1 and it can
guarantee safety, as stated in the following Lemma.

Lemma 1. Under Assumptions 1 to 4, the hard terminal-
constraint MPC with safe task abortion described in Alg. 1
guarantees that constraints are never violated.

Proof. This proof is straightforward. OCP (6) is always
feasible because, by Assumption 1 and 2, from any state
in V̂ we can reach an equilibrium in at most N̄ time steps.
Assumption 4 ensures that, by dedicating a computational
unit to solving OCP (6), we get a solution before reaching
the terminal state of the last feasible MPC problem, xN |k−1.
After reaching xN |k−1, we follow the solution of OCP (6)
to reach an equilibrium state, in which we can stay forever
without violating the constraints.

Our most critical assumption is probably Assumption 4,
which relies on the MPC horizon N to be sufficiently
long, and on N̄ not to be too large, to allow for enough
computation time to solve the OCP. This may be challenging
because we can expect N̄ to be rather large, since it must
be sufficient to allow the system to reach an equilibrium
from any state in V̂ . At the same time, N cannot be set
too large because it is proportional to the computation time
of the MPC problem. However, learning-based warm-start
techniques could be used to speed-up computation [16], [17].

1) Safe-Abort for Robot Manipulators: During our tests,
we have noticed that the safe-abort OCP (6) was hard to
solve for our numerical solver. Therefore, we suggest an
alternative formulation, which is equivalent to (6) for the
case of robot manipulators, but leads to less numerical issues
with the solver. Given xinit = (qinit, q̇init) ∈ V̂ , where q are
the joint angles and q̇ are the joint velocities, OCP (6) can

Time

Step

MPC

Loop

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Hard Receding Constraint Soft Terminal Constraint

x0|0

x1|0
x2|0

x3|0 x4|0
x0|1

x0|2

x0|3
x0|4

Fig. 1. Example of Receding-Constraint MPC with N = 4. After the MPC
loop 3, the receding constraint slides forward because x4|3 ∈ V̂ .

be substituted by:

maximize
{xi}N̄

0 ,{ui}N̄−1
0

d⊤q̇0

subject to q0 = qinit

(I − dd⊤)q̇0 = 0

d⊤q̇0 ≤ ||q̇init||
(5c), (5d), xN̄ = xN̄−1,

(7)

where d = q̇init

||q̇init|| is the initial velocity direction. OCP (7)
is inspired by the VBOC method [12]. Rather than fixing
the initial state as in (6), we fix only the joint angles and
the direction of the joint velocity vector, while maximizing
the joint velocity norm. In this way, the problem is feasible
for any xinit ∈ X . In practice, our solver was always able
to solve this formulation, even for cases where xinit /∈ V̂ ,
making the Safe Task Abortion more reliable.

B. Receding-Constraint MPC

Instead of relying exclusively on the final state to ensure
safety, we could exploit the fact that, as long as at least one
state xr ∈ V̂ (with 1 ≤ r ≤ N ), we know that x1 ∈ V
because from x1 we can reach xr. This suggests that a less
conservative constraint to include in our OCP would be:

(x1 ∈ V̂) ∨ (x2 ∈ V̂) ∨ . . . ∨ (xN ∈ V̂) (8)

Unfortunately, OR constraints are extremely challenging for
numerical solvers. Even if this constraint cannot be used, we
can find other ways to exploit this insight.

We suggest to adapt online the time step at which we
constrain the state in V̂ . For instance, if at the MPC loop k−1
we had xr|k−1 ∈ V̂ , at the loop k we know that it is possible
to have xr−1|k ∈ V̂ (assuming no disturbances and modeling
errors), therefore we can impose this constraint in a hard way.
This is sufficient to ensure safety for r loops, during which
this receding constraint would slide backward along the
horizon. However, once the receding constraint reaches time



Algorithm 2 Receding-Constraint MPC with Task Abortion
Require: Number of time steps T , Initial state x0,

Initial guess {xg
i }

N
0 , {ug

i }
N−1
0 , OCP (9), SafeAbortFlag,

Safe-abort OCP (6)
1: r ← N ▷ Receding constraint index
2: for t = 0→ T − 1 do
3: if SafeAbortFlag and r = 0 then ▷ Abort task
4: return FOLLOWSAFEABORTTRAJECTORY()
5: {x∗

i }N0 , {u∗
i }N−1

0 ← OCP(r, xt, {xg
i }

N
0 , {ug

i }
N−1
0 )

6: r ← r − 1 ▷ Recede constraint
7: for k = r + 2→ N do ▷ Search last state in V̂
8: if x∗

k ∈ V̂ then
9: r ← k − 1

10: if SafeAbortFlag and r = 0 then ▷ Cannot recede
11: SOLVESAFEABORTOCP(x∗

1) ▷ Solve (6) in Unit B
12: xt+1 ← f(xt, u

∗
0) ▷ Simulate dynamics

13: {xg
i }

N−1
0 , {ug

i }
N−2
0 ← {x∗

i }N1 , {u∗
i }N−1

1

14: xg
N , ug

N−1 ← xg
N−1, u

g
N−2

step 0, we can no longer rely on it to ensure safety. Therefore,
we suggest to maintain also a soft constraint to encourage
the terminal state to be in V̂ . This MPC formulation can be
stated as:

minimize
{xi}N

0 ,{ui}N−1
0 ,s

N−1∑
i=0

ℓi(xi, ui) + ℓN (xN ) + ws||s||2

subject to (5b), (5c), (5d)

xr ∈ V̂
xN ∈ V̂ ⊕ s.

(9)

After solving the MPC at loop k− 1, we can check whether
xN |k−1 ∈ V̂; if that is the case, at loop k we can move
the receding constraint forward on xN−1|k, which ensures
safety for other N − 1 loops. Actually, we can even check
whether xi ∈ V̂ , for any i > r, and if that is the case we
can set r = i−1 at the next loop. The resulting algorithm is
summarized in Alg. 2 (with SafeAbortFlag set to false),
and a simple example is depicted in Fig. 1.

To clarify the theoretical properties of this receding-
constraint formulation, we first need to introduce the concept
of N -step control invariant set.

Definition A set A ⊆ X is N -step control invariant if,
starting from any state in A, it is possible either to remain in
A, or to leave A and come back to it within N time steps:

∀x0 ∈ A :∃ {ui}k−1
0 , 1 ≤ k ≤ N,

xk ∈ A, xi ∈ X , ui ∈ U , ∀i = 0, . . . , k − 1
(10)

This is an extension of the well-known control invariance,
with 1-step control invariance being equivalent to classic
control invariance. Now we can state under which conditions
the receding-constraint MPC is recursively feasible.

Theorem 1. Assuming V̂ is N -step control invariant and
the penalty on the soft terminal constraint ws is sufficiently
large, the Receding-Constraint MPC formulation described
in Alg. 2 (with SafeAbortFlag set to false) is recursively
feasible.

Proof. Assume the receding-constraint formulation is feasi-
ble at the first MPC loop k = 0, which implies that xN |0 ∈ V̂ .
This guarantees recursive feasibility for N loops, during
which the receding constraint can slide backward along the
horizon. However, since V̂ is N -step control invariant by
assumption, we know that in one of those N loops it will
be possible to satisfy the soft terminal constraint xN ∈ V̂ .
This is because at each loop k, the MPC solver tries to satisfy
condition (10) for a fixed value of k. Since we know that (10)
is feasible for some k ∈ [1, N ], we can infer that the soft
terminal constraint xN |k ∈ V̂ must be feasible for some MPC
loop k ∈ [1, N ]. Under the assumption that ws is sufficiently
large, we can infer that at that loop k, the soft terminal
constraint will be exactly satisfied. When this happens, the
hard receding constraint moves to time step N −1, ensuring
recursive feasibility for another N−1 loops. At this point the
same reasoning can be applied to ensure recursive feasibility
indefinetely.

This theorem highlights how the proposed receding-
constraint MPC guarantees recursive feasibility even if the
set V̂ is not control invariant. We rely indeed on a weaker
condition, which is N -step control invariance. Our condition
is weaker because any 1-step control invariant set is also N -
step control invariant, for any N > 1, therefore our approach
guarantees recursive feasibility for a larger class of sets,
which contains the class of control-invariant sets. Unfortu-
nately, computing exactly an N -step control invariant set is
currently as hard as computing a standard control invariant
set. However, in practice, it is more likely that a numerical
method for approximating control invariant sets produces
a set that is N -step control invariant, rather than control
invariant. Therefore, as empirically shown in our results,
our approach has a higher probability of being recursively
feasible than a terminal-constraint MPC, even if in practice
we cannot guarantee the assumptions of Theorem 1 to be
satisfied.

C. Safe Task Abortion with Receding Constraint

Since in practice we cannot guarantee that V̂ be N -step
control invariant, we cannot guarantee that the receding
constraint formulation be recursively feasible. Therefore, we
may need to use the task-abortion strategy when the receding
constraint has reached time step 0. The problem is that at that
point we have only one time step to solve OCP (6). In this
paper, we assume that this computation time is enough, and
we describe in Alg. 2 (with SafeAbortFlag set to true)
the Receding-Constraint MPC with Task Abortion.

If one time step were not sufficient to solve (6), several
solutions could be explored. We briefly discuss them in the
following, but we leave their implementation for future work.
A possible way to reduce computation time is to pre-compute
a warm-start for OCP (6), before r reaches 0. While we do
not know in which state the system will be at that time, we
can use the trajectory predicted by the MPC as a guess. If
this warm-start is not enough to solve OCP (6) in one time
step, we could modify the receding-constraint formulation



to ensure that the pre-computed safe-abort trajectory starts
exactly at the state of the system when the task abortion
is initiated. To achieve this, we must modify the receding
constraint from xj|k ∈ V̂ to the more conservative xj|k =
xj+1|k−1. In other words, we constrain the predicted state
in V not to change across the MPC loops. This is bound
to deteriorate performance, but it should still outperform the
standard Terminal-Constraint MPC.

IV. RESULTS

This section presents our results1 comparing five MPC
formulations:

• Naive: a classic formulation without terminal constraint,
i.e., problem (5) with XN = X .

• Soft Terminal (ST): it uses a soft terminal constraint set
XN = V̂ with a penalty weight of 108.

• Soft Terminal With Abort (STWA): as the previous one,
but it triggers the safe abort whenever xN |k /∈ V̂ .

• Hard Terminal With Abort (HTWA): it uses a hard
terminal constraint set XN = V̂ , and it triggers the safe
abort whenever the OCP is unfeasible (as in Alg. 1).

• Receding: the novel formulation (9) described by Alg. 2,
using soft constraints for both xr ∈ V̂ (penalty weight
of 108) and xN ∈ V̂ (ws = 105).

For the simulations, we have considered a planar triple
pendulum, thus nx = 6, nu = 3. We have used CASADI
[18] for the symbolic computation of the dynamics, costs
and constraints, and ACADOS [19] to solve the OCPs and
integrate the dynamics. The OCP is a tracking problem with
respect to a static state, purposely chosen near the joint
limits, to test the safety of the controllers:

xref = (qmax − 0.05, q̄, q̄, 0, 0, 0), (11)

with q̄ = (qmax + qmin)/2. We have used as running cost
a least-squares function, penalizing deviations from xref and
control efforts:

l(x, u) = ||x− xref||2Q + ||u||2R
Q = diag([500, 10−4I5]), R = 10−4I3,

(12)

where Ik is the identity matrix with size k. Set membership
to V̂ is verified with the constraint:

(1− α)ϕ(x)− ||q̇|| ≥ 0, (13)

where ϕ(·) is a Neural Network (NN) computing an upper
bound on the joint velocity norm [12], and α ∈ [0, 1] is a
safety margin that we introduced to ensure that V̂ ⊆ V .

We have run 100 simulations for each MPC formulation,
starting from the same 100 random joint positions q0 with
q̇0 = 0. The time step of the MPCs was dt = 5ms.
The horizon of Naive has been fixed to N = 36, so that
each MPC iteration takes less than 4ms (leaving 1ms for
further operations, to mimic the timing limitations of a real-
time application). We used instead shorter horizons for the
other approaches (N = 35 for the three terminal-constrained

1Our code is available at https://github.com/idra-lab/
safe-mpc.

TABLE I
NUMBER OF TIMES EACH CONTROLLER COMPLETED THE TASK, SAFELY

ABORTED IT, OR VIOLATED A CONSTRAINT (WITH α = 2%).

MPC COMPLETED ABORTED FAILED

(6) / (7) (6) / (7)

NAIVE 68 - 32
ST 83 - 17

STWA 58 9 / 16 33 / 26
HTWA 60 10 / 17 30 / 23

RECEDING 72 11 / 20 17 / 8

TABLE II
NUMBER OF TIMES EACH CONTROLLER COMPLETED THE TASK, SAFELY

ABORTED IT, OR VIOLATED A CONSTRAINT (WITH α = 10%).

MPC COMPLETED ABORTED FAILED

(6) / (7) (6) / (7)

NAIVE 67 - 33
ST 80 - 20

STWA 56 20 / 36 24 / 8
HTWA 54 21 / 37 25 / 9

RECEDING 65 21 / 33 14 / 2

MPC’s, and N = 34 for Receding), since their MPC
iterations take more time due to the additional constraints.

Table I reports the number of tasks completed, safely
aborted, or failed by each controller, using a safety margin
α = 2%. For the safe abort, we have tested both formu-
lation (6) and (7). In terms of safety, Naive violated the
constraints the most, while Receding violated them the least
(when using (7) for safe abort). In terms of performance,
ST completed more tasks than the others, but at the price of
a higher number of failed tasks than Receding. STWA and
HTWA performed strictly worse than ST, completing less
tasks and failing more times. The lower number of completed
tasks is explained by the trigger of the safe abort, while the
relatively high number of failures could be explained by the
small safety margin α, which is not enough to ensure V̂ ⊆ V .

Table II reports a similar comparison, but with a higher
safety margin α = 10%. The number of completed tasks is
slightly smaller for all approaches using V̂ , but the number
of failures is remarkably smaller for STWA, HTWA, and
especially for Receding, which failed only 2 times. The
number of failures remained large when using (6) for the
safe abort, demonstrating the benefit of formulation (7).

Fig. 2 and 3 highlight the different risk-aversion levels
of ST and STWA by showing the joint trajectories of two
simulations with α = 10%. In both cases STWA aborted the
task. ST instead completed the first task, while it failed the
second one. ST is willing to take risks, which sometimes
leads to completing the task (Fig. 2), but sometimes it leads
to failure (Fig. 3). STWA is instead risk-averse, and it triggers
a safe abort as soon as a risk of constraint violation is

https://github.com/idra-lab/safe-mpc
https://github.com/idra-lab/safe-mpc
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The last plot shows the value of the terminal constraint (13). The vertical
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Fig. 3. Comparison between ST (task failed) and STWA (task aborted).
The last plot shows the value of the terminal constraint (13). The vertical
line highlights the start of the safe-abort trajectory.

TABLE III
MEAN TRACKING COST AND COMPUTATION TIMES FOR THE MPC

REAL-TIME ITERATION (RTI) AND SAFE ABORT OCP.

MPC COST (·103) RTI (ms)
SAFE ABORT (s)
(6) (7)

NAIVE 2.867 3.80 - -
ST 2.868 3.74 - -

STWA 3.012 4.13 0.17 2.34

HTWA 3.012 3.94 0.18 1.98

RECEDING 2.872 - 0.07 3.36

detected, which leads to less completed tasks, but also less
failures.

In terms of cost, Table III shows that the average cost for
the completed tasks (with α = 10%) is comparable for the
different formulations, thus the tracking performance is not
degraded by the extra constraints using V̂ . The same table
also reports the computation times. The 99-percentile for
the real-time iteration scheme [20] is always below the time
step duration (5 ms). We do not report the RTI computation
times for Receding because of a technical issue. Indeed,
the Python interface of Acados does not support time-
varying constraints. Therefore our current implementation of
Receding actually soft constrains the whole state trajectory in
V̂ , but then sets to zero the penalty weights for all time steps
except for r and N , resulting in a much higher computation
time than needed. The SAFE ABORT column reports the
maximum computation times for the Task Abortion with
the two methods. As previously stated, OCP (7) reports a
higher number of successes (see Table I and II) at the cost of
large computation times, while (6) reports good computation
times (satisfying Assumption 4), but with a high number of
failures.

V. CONCLUSIONS

We have presented a novel Receding-Constraint MPC
formulation, which provides recursive feasibility guarantees
under a weaker assumption on the used safe set with respect
to classic approaches. Moreover, we have presented a task-
abortion strategy that allows to reach an equilibrium state
whenever a risk of constraint violation is detected. Our
results on a 3-joint manipulator show the improved safety
of the presented Receding-Constraint MPC with respect to
other state-of-the-art methods.

Future research will focus on finding a safe-abort method
that achieves high success rates as (7), but with reasonable
computation times as (6). For this, we plan to extend the
method in [12] to learn both the set V̂ and a policy to
drive the state to an equilibrium. While this work focused
on model-based control methods, our approach could be
applied in the future to safety filters for making black-box
RL policies safe.
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“Nominal stability of real-time iteration scheme for nonlinear model
predictive control,” IEE Proceedings-Control Theory and Applications,
vol. 152, no. 3, pp. 296–308, 2005.

https://doi.org/10.1016/j.automatica.2019.108508
https://doi.org/10.1016/j.automatica.2019.108508
https://www.arxiv.org/abs/1611.03158
https://arxiv.org/abs/2012.03428

	Introduction
	Preliminaries
	Notation
	Problem statement
	Model Predictive Control and Recursive Feasibility
	Terminal Constraint

	Safe Model Predictive Control
	Safe Task Abortion
	Safe-Abort for Robot Manipulators

	Receding-Constraint MPC
	Safe Task Abortion with Receding Constraint

	Results
	Conclusions
	References

