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Abstract— In this paper, we propose a robot oriented knowl-
edge representation system based on the use of the Prolog
language. Our framework hinges on a special organisation of
Knowledge Base (KB) that enables: 1) its efficient population
from natural language texts using semi-automated procedures
based on Large Language Models (LLMs); 2) the seamless
generation of temporal parallel plans for multi-robot systems
through a sequence of transformations; 3) the automated
translation of the plan into an executable formalism. The
framework is supported by a set of open source tools and its
functionality is shown with a realistic application.

I. INTRODUCTION

In the last few years, the rising tide of AI has brought
the promise of a radical change, in which robots will be
able to autonomously move in unstructured environment,
react to unanticipated events, and cooperate with humans
and also other robots. The bedrock of this revolution rely
on an effective and efficient way to manage knowledge.
While the way humans produce and apply knowledge is
only superficially understood, some defining and commonly
recognized features of human knowledge representation are:
1) understandability and explainability: we use different

types of languages to accumulate information that can
be shared with other humans;

2) scalability: we use hierarchies and conceptual links to
organise massive amounts of knowledge;

3) usability: conceptual entities are combined with a vocab-
ulary of actions that humans can generate or receive.

In the past, different researchers have sought ways to
express knowledge that could meet at least part of these
requirements and be usable in computer programmes (and
hence in a robot). Logic languages, like Prolog, or functional
languages, like Lisp, hold the promise to be a lingua franca
between humans and robots [1], [2].

Prolog is a logic programming language used for the rep-
resentation of knowledge and symbolic reasoning. In Prolog,
one can define a KB, i.e., a set of facts and rules describing
the problem, that can be queried to obtain information
regarding the satisfiability of more complex conditions. In
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robotics, it is a useful tool to represent knowledge about
robots, their actions, and the environment. These interesting
features of Prolog, and in general of logical languages, have
led to their application to construct knowledge representa-
tions for robotics, such as KnowRob [3], to solve planning
problems [4] and to foster human-robot interaction when
paired with natural language processing [5], [6].

In this paper, we focus on two fundamental questions.
First, while it is true that a Prolog KB is understandable
and interpretable by a human reader, it is also not easy to
write for a non-specialist. On the other hand, the automatic
extraction of a strongly structured computer artefact, like a
Prolog KB, from natural language transcript of conversa-
tions with humans is a very challenging and expensive task
for traditional natural language processors. In this context,
the emergence of large language models (LLMs) [7]–[9]
could come to the rescue. They are a class of AI models
aimed at natural language processing. They are often built
upon transformer networks [10], which utilise self-attention
mechanisms to gain a better understanding of the context
of the words in a sentence. They are typically trained with
enormous amounts of data and have hundreds of billions
of parameters, which can also be fine-tuned for the task
in which they have to be employed [11], [12]. LLMs have
been applied to a growing number of different fields, from
healthcare [13] to planning [14], demonstrating also their
limitations [15]. LLMs abilities have recently been the focus
of many studies on planning [16], [17], which have tested
LLMs to either provide a PDDL problem to a certain do-
main [16], or directly create Pythonic code [17]. In particular,
given the outcome of these works, it appears that LLMs
cannot be directly used to plan [15], whereas they may be
more than capable to integrate common-sense knowledge that
is otherwise elusive to capture.

This leads us to our first research question: is it possible
to use LLM to populate a robot-oriented Prolog KB, at
least as part of a semi-automated procedure? Given that
Prolog is a widespread choice for expressing KBs in terms
of logic clauses (predicates), symbolic reasoning and natural
language processing, the second research question is: could
this programming language be leveraged to create a frame-
work that, exploiting an LLM to process the input, is able
to smoothly provide a resilient plan and learn from possible
unforeseen events?

We address these two questions by proposing a
novel Prolog-based knowledge representation system, which
1) simplifies the population of the KB with a semi-automatic
procedure relying on LLMs. As a first step towards the



generation of the whole KB, in this work we present the
generation of the initial and final states of the KB; 2) enables
the seamless generation of temporal parallel plans that sup-
port parallel actions of multiple agents, and 3) automatically
translates the plan into a formalism (the Behaviour Trees
(BT) [18]). We evaluated the proposed method by verifying:
the correctness of the initial and final states returned by the
LLM, comparing the performances of 3 golden standards in
terms of LLMs, such as GPT 3.5, GPT 4.0, and BARD; and
the consistency of the schedule generated by the planner. The
results demonstrated the capability of LLMs in interpreting
the natural language inputs in terms of plan requests and the
potential suitability for further advanced requests towards the
generation of the whole knowledge base.

II. PROBLEM DESCRIPTION AND CONCEPTUAL SCHEME

In this section, we define the addressed problem and we
describe the workflow we adopted to solve it. We focus
on the challenge of orchestrating a sequence of actions for
multiple agents using the Prolog programming language. Our
rationale for choosing Prolog is based on the fact that it is
suitable for constructing knowledge bases well perceived in
robotics, and it allows for symbolic reasoning.

In order to produce a feasible and robust plan, we rely on
(state-space) temporal task planning, here briefly described.
In temporal task planning, one does not only reason about
the ordering of actions, but also about their metric dura-
tion. A temporal task planning problem is a tuple TP =
(F,DA, I,G), with F , I and G defined as the sets of
fluents, initial and final states, respectively (STRIPS classical
planning problem [19]), and with DA being a set of durative
actions. A literal is either a fluent or its negation. Every
action a ∈ A is defined by two sets of literals: the precon-
ditions, written pre(a), and the effects eff(a). Following
[20]–[22], a durative action a ∈ DA is given by i) two
classical planning actions a⊢ and a⊣, with preconditions and
effects at start and at end; ii) and a minimum la ∈ R+ and
maximum ua ∈ R+ duration. The ordering between the two
snap actions is enforced by an overall condition. A temporal
plan π = {tta1, · · · , ttan} is a set of time-triggered temporal
actions, and it is a valid temporal plan if and only if it can
be simulated, i.e., starting from the initial state we apply
each timed triggered action ttai = ⟨ti, ai, di⟩ ∈ π at time
ti with duration di, and at the end of the simulation, we
obtain a state fulfilling the goal condition. We refer the reader
to [23] for a thorough discussion on the semantics.State-
space temporal planning is a specific approach to temporal
planning, combining i) a classical forward state-space search
to generate a candidate plan outline; and ii) a temporal
reasoner to check its temporal feasibility [20]–[22]. The
search extracts a classical planning and then checks if the
associated temporal network is consistent. If it is, then a
time-triggered plan can be computed and the search stops,
otherwise the process starts again.

In this work, we focus on solving the problem of how
to stack blocks in order to produce pillars. The blocks are
scattered, and some agents must cooperate in order to stack

them correctly. The goal of our framework is to take the set
of actions that the agents can do (in Prolog) with a natural
language description of the initial and final states of the
blocks, and exploit the LLMs to produce the remaining KB
needed in order to correctly generate a task plan.

The framework we propose is depicted in Figure 1. It
starts by creating a knowledge base defined in Prolog. While
one could directly implement the KB in Prolog, the goal of
the framework is to automatise the KB generation process
through an LLM, such as GPT or LaMBDA, which is able
to parse natural language descriptions (e.g., manuals) and
provide correct actions and predicates to model the problem.
Having such a feature would greatly increases the usability of
the framework since it would be possible to specify in natural
language the environment and the actions that the agents can
perform. In this work, we have focused and tested the usage
of LLMs to generate the initial and final states, whereas the
actions where provided. More information on the knowledge
base will be provided in Section III. Subsequentially, we
use Prolog to compute a total-order plan based on snap
actions. The plan is obtained by leveraging a forward search
approach that progresses the initial state, taken from the
KB, till the goal has been reached. The progess is carried
out by applying the effects of actions and exploiting the
symbolic reasoning provided by Prolog. Differently from
what is commonly done in temporal planning, we do not use
any heuristic to guide the search, which will be investigated
in the future. As a result, the computed total order plan with
the snap actions may not be optimal. While constructing
the total-order plan, we also save all the states in which
the chosen action had its preconditions satisfied and could
hence be executed. We leverage this information to build a
partial order of the actions for the computed total order plan,
which in turn is encoded as a Disjunctive Temporal Network
(DTN), which we then strengthen to an Simple Temporal
Network (STN) by considering only the last achiever [22]
of the action preconditions. To complete the STN, we also
include constraints on the duration of each action (between
the start snap action and its corresponding end [22]). We
remark that the strengthening of the DTN to the STN is
not achieved using Prolog (specifically, we implement it in
Python). For more information about the planning steps,
see Section IV. Then, the consistency of the computed
STN is checked by examining whether there are negative
cycles in the graph [24]. If there are, then we can ask
Prolog to generate a new total-order plan and subsequently
a new partial-order plan and STN. If this operation fails
multiple times, then there might be an error inside our
knowledge base, which should be verified and corrected
accordingly, hence also improving the domain. Once the STN
is constructed and verified, we convert it into a Behavior Tree
(BT), a formalism that can then be directly executed by the
robots. While executing the constructed BT, we are aware
that unexpected exceptions or problems may arise since the
KB used to compute the plan may be not aligned with the
real world. In such a case, there are two possible solutions to
the problem, either we refine the KB or we add constraints



Fig. 1: The general diagram of the framework. The main idea is to create a feedback loop in different parts of the system
to correctly modify the domain where needed and to learn from the environment.

on the agents so that the same situation does not arise again.

III. THE KNOWLEDGE BASE

In this section, we describe the general structure of the
knowledge base and how LLMs are used to extract initial
and final goals to expand the KB.

A. KB Structure

We employ SWI-Prolog [25] to easily create, modify, and
query the knowledge base. We describe each state with a
list of predicates, which define the position of the blocks
and the status of the agents. For example, ont(B, X, Y)
describes the fact that block B is on the table at coordinates
(X, Y), and av(A) states that agent A is available for use.
Our KB is composed of predicates describing the states, and
Prolog rules describing the actions, which have the following
structure:
action(Name, ValidConditions, InvalidConditions,

InvalidConditionsAtEnd, ConditionsOnKB, Effects).

Of which an example is here shown:
action(grip_ontable_start(Agent, Block),

[ont(Block, X, Y), av(Agent), clr(Block)],
[gripped(_, Block), gripping(_, Block)],
[ont(Block, X, Y)],
[],
[del(av(Agent)), add(gripping(Agent, Block))]).

The variable Name defines the name of the action and its
argument, e.g., for the action corresponding to the gripping
of an agent A on a block B, we use Name=grip(A,B). The
four variables that follow are lists of conditions that must be
checked before deciding whether to add the action or not:
• ValidConditions contains conditions that should be

verified in the current state;
• InvalidConditions contains conditions that must not

be verified in the current state;
• ValidConditionsAtEnd contains conditions that

must not be verified in both the current state and the goal;
• ConditionOnKB contains conditions that must be veri-

fied on the knowledge base before deciding on the action.
The list ValidConditionsAtEnd checks if a condition
from the goal has already been achieved and avoids actions
which may make one of the contained conditions not to
hold. ConditionOnKB is a list used to force the Prolog
interpreter to ground the variables of the action to some
values. The grounding predicates inside the KB are:

• pos(X,Y), which indicates positions that may be used
by the agents to temporarily store blocks;

• The predicates inside the goal state, which are added to
avoid trivial and useless actions.

Indeed, the search in Prolog is not guided and if we were
not to match the goal when choosing an action, the program
may add useless actions such as the movement of a block to
the same position it already is in.
Finally, Effects contains a list of predicates on how to
modify the current state in a new state. Each predicate is in
the form of either add(P(...)), which adds P(...) to
the state, or del(P(...)), which looks for P(...) in
the current state and removes it.

To query for a solution, we provide the initial and final
states as input parameters to the go function. A detailed
discussion of this function can be found in Section IV. An
example query is the following one:
test1 :- go([av(ag1), ont(b1, 1, 1), clr(b1)],

[av(ag1), ont(b1, 2, 2), clr(b1)]).

B. Large Language Models

While LLMs excel at learning complex patterns and
information from vast training data, they primarily rely
on statistical associations. They do not possess genuine
inferential reasoning capabilities, and consequently, LLMs
struggle when confronted with tasks different from the data
they were trained on [15], [17]. Despite this, they can provide
acceptable starting points for further refinements.

In our approach, LLMs are employed in order to generate
the initial and goal states in Prolog for problems specified as
natural language queries. LLMs are provided with queries
involving multiple test cases. In the query configuration,
there are multiple examples of test cases with explanatory
comments and a problem description, as shown in Figure 2.
These queries specify the desired initial and final states of
the environment for the different examples. By setting the
temperature parameter to zero, the stochasticity of the LLM’s
responses is minimized, providing more consistent outputs.
Finally, we used GPT APIs to make tests on ChatGPT
and GPT4, whereas we simply used the prompt-chat for
Bard. The APIs were automatically called by running Python
scripts and the results from all the LLMs were manually
checked. Once the initial and goal states are generated, they
are included into the KB.



Consider the following test cases.
Each of them moves a set of boxes (b1, b2, b3, ...) from an initial state to a final state using agents(ag1, ag2,..).
```
% from b1 at the point (2,2), b2 on the table at point (1,1) to b2,b1 stacked at point (3,3).
test1 :- go([av(ag1), av(ag2), av(ag3), ont(b1, 2, 2), ont(b2, 1, 1), clr(b1), clr(b2)],

[av(ag1), av(ag2), av(ag3), ont(b2,3,3), on(b1, b2, 3, 3), clr(b1)]).
% from b2,b1 stacked to b1, b2 on the table.
test2 :- go([av(ag1), av(ag2), av(ag3), ont(b2,1,1), on(b1, b2, 1, 1), clr(b1)],

[av(ag1), av(ag2), av(ag3), ont(b1,2,2), ont(b2, 3, 3), clr(b1), clr(b2)]).
% from b2,b1 stacked and b3 on the table to b1,b2,b3 stacked.
test3 :- go([av(ag1), av(ag2), av(ag3), ont(b2,1,1), on(b1, b2, 1, 1), clr(b1), ont(b3, 2, 2), clr(b3)],

[av(ag1), av(ag2), av(ag3), ont(b1,3,3), on(b2, b1, 3, 3), on(b3, b2, 3, 3), clr(b3)]).

```
Can you generate a prolog code containing a new test case, namely test_case, in which we use 2 agents to move the boxes
b1, b2, on the table, which are at (1,1) and (2,2), respectively, to a final stack [b1,b2] at point (3,3), which is
ordered from top to bottom?

Fig. 2: Example of message used to query the LLM.

IV. TASK PLANNING

In this section, we first describe how the total order plan
is computed to solve the task planning problem. We then
discuss how to extract a partial-order plan from the total-
order one, followed by its transformation into an STN.
Finally we outline how to obtain a BT from the STN.

A. Total-Order Plan

To compute a total-order plan we have developed the
plan function (see Algorithm 1). This function recursively
checks whether an action from the available action list can
be scheduled for execution, by: i) verifying that the action’s
preconditions hold in the current state; and ii) assessing
that none of the undesired predicates holds in the current
state or in the final state. If both statements are met, plan
applies the effects specified by the action, resulting in a
new state. Subsequently, the function is invoked recursively
to determine whether the current state matches the goal
state. If the two states match, the process terminates and the
computed plan is returned, otherwise, it continues to search
for a viable plan. The function also checks that the depth of
the recursion (length of the total order plan) does not exceed
a given threshold by forcing a fail, which in turns triggers
a backtrack to search for other solutions. Indeed, the search
in Prolog is depth first and uninformed search, meaning that
it may get stuck in a cycle of actions without reaching an
optimal result. Indeed, this search may lead to very deep and
time-consuming, albeit valid, plans, and to compensate for
this, we have limited the depth of the recursion.

B. Partial-Order Plan and STN

To obtain the partial order plan we compare the precon-
ditions of each newly chosen action with the effects of the
previous actions. Indeed, while the chosen action was cor-
rectly added at a given moment since its preconditions were
verified, this does not capture all the causality relationships
between the different actions. What we want to capture are
all the achievers, that is, actions whose effects allow the
last added action to be executed. The goal of this step is to
obtain a graph of temporal-causal relationships between the
different actions so that an action can be executed only when,
and as soon as, its preconditions are satisfied. Creating such

INIT

a1⊢ a1⊣ a4⊢

a3⊢ a3⊣ a2⊢ a2⊣

a4⊣ GOAL
a1ub

a4ub

a3ub
a2ub

−a1lb

−a4lb

−a3lb
−a2lb

Fig. 3: In black, the graph representing the partial-order plan
obtained from the total-order plan described in Table I. In
red, the constraints on the durations to obtain the STN.

a graph allows for concurrent actions to be carried out.
To correctly bind actions between each other, we split the

actions into two snap actions, a starting and a terminating
one, e.g., move block becomes move block⊢ (start)
and move block⊣ (end). In this way, we can safely state
that another action can start only when the previous one is
finished, e.g., a grip on a block can only start when the move
on the same block has ended. Moreover, constraints on the
duration of the actions have been put in place, that is, a
terminating action cannot happen after a certain amount of
time da from the starting of the action: a⊣ − a⊢ ≤ da.

We create the above-mentioned graph by calling the
partial order function each time an action is added to
the total order plan. Such a function takes the considered
action and the list of previous actions and recursively checks
if any of the preconditions of the chosen action is satisfied
by the effects of another previous action. If it is, then there
is a causal link between the two actions. Actions that do not
have a causality relationship can be executed in parallel.

Consider the total-order plan shown in Table I. By apply-
ing the above function we obtain, for each action, a list of
achievers that are needed for the pre-conditions of the action
(Table II). From this list, we can construct a graph similar
to the one shown in black in Figure 3, from which we can
see that the two series of action can be run in parallel.

At this point, we want to obtain an STN from the partial-
order. To do this, for each action, we keep only the earliest
timestamp at which the action was executable. Moreover,
we enforce the constraints on the duration of the action
by inserting backward links of negative weight between
the nodes. Once the STN has been built, we check that
it is consistent, i.e., that there are no negative cycles. The



State Action
[av(ag1), av(ag2), ont(b1, 1, 1), ont(b2, 2, 2), clr(b1), clr(b2)] a1⊢ : grip(ag1, b2)⊢
[gripping(ag1, b2), av(ag2), ont(b1, 1, 1), ont(b2, 2, 2), clr(b1), clr(b2)] a1⊣ : grip(ag1, b2)⊣
[gripped(ag1, b2), av(ag2), ont(b1, 1, 1), ont(b2, 2, 2), clr(b1)] a2⊢ : move_block(ag1, b2, 2, 2, 3, 3)⊢
[moving(ag1, b2, 2, 2, 3, 3), av(ag2), ont(b1, 1, 1), clr(b1)] a3⊢ : grip(ag2, b1)⊢
[gripping(ag2, b1), moving(ag1, b2, 2, 2, 3, 3), clr(b1)] a3⊣ : grip(ag2, b1)⊣
[gripped(ag2, b1), moving(ag1, b2, 2, 2, 3, 3)] a2⊣ : move_block(ag1, b2, 2, 2, 3, 3)⊣
[gripped(ag2, b1), ont(b2, 3, 3), clr(b2), av(ag1)] a4⊢ : move_block(ag2, b1, 1, 1, 3, 3)⊢
[moving(ag2, b1, 1, 1, 3, 3), ont(b2, 3, 3), clr(b2), av(ag1)] a4⊣ : move_block(ag2, b1, 1, 1, 3, 3)⊣
[on(b1, b2, 3, 3), clr(b1), av(ag2), ont(b2, 3, 3), clr(b2), av(ag1)]

TABLE I: Table describing how the actions change the prior state. av(agi) states that agent agi is available, ont(bi, X,
Y) states that block bi is in position (X,Y), on(bi, bj, X, Y) states that block bi is on top of block bj in position
(X,Y). On the right, the total order plan to move from the initial state to the final one.

Action a1⊢ a1⊣ a2⊢ a2⊣ a3⊢ a3⊣ a4⊢ a4⊣

Achievers [] a1⊢ a1⊣ a2⊢ [] a3⊢ a3⊣ a2⊣ , a4⊣

TABLE II: Achievers for the total order plan in Table I.

possibility of finding negative cycles comes from the fact
that we consider a lower and an upper bound for the action
duration, which increases the resilience of the final plan to
possible delays in the real-world execution of the actions.
The constraint on the duration a⊣ − a⊢ ≤ da becomes
la ≤ a⊣ − a⊢ ≤ ua, where la and ua are the lower and
upper bounds on the duration of action a, respectively. The
final phase, involving the construction and validation of the
STN, was done exploiting Networkx Python framework [26].

Algorithm 1 Pseudo-code for total and partial-order plan.
function PLAN(State, Goal, Been list, Actions, Times, MaxDepth)

if State = Goal then
print(Actions)

else
length(Actions) < MaxDepth
choose actions(Name, Preconditions,Effects)
check conditions(Preconditions, State)
Child state← change state(State, Effects)
if Child state ̸∈ Been list then

Stack(Child state,Been list)
Stack(Name,Actions)
partial order(Preconditions,Been list, T ime)
recursively call plan

function PARTIAL ORDER(Conditions, Action list, Achievers)
for Actioni ∈ Action list do

if achiever(Conditions,Actioni) then
Achievers ∪ {i}

C. Behaviour Trees

The final step of the diagram shown in Figure 1 is the
modelling of a BT from the STN. We will not delve into deep
in the description of this step as this is not the main focus
of the work and a complete explanation is available [28].
Starting from the root of the STN, we perform a deep-first
search (DFS) of the network adding a sequential behaviour
sub-tree each time that an action has only one exiting link,
or a parallel behaviour sub-tree when the action has multiple
exiting links. A parse action is executed before calling the
function to create the BT in order to remove the backward
links, allowing avoiding the insertion of waiting action and
hence the creation of narrower BTs. Every time a start
action is encountered during the DFS, a sub-tree in charge of
starting the action is created, which checks the preconditions

and applies the effects at the start. Similarly, every time an
end action is met, the algorithm inserts a sub-tree, whose
role is to apply the correct effects at the end.

V. EVALUATION WITH AN EXAMPLE APPLICATION

Here we first show the application of the framework using
an example application, which consists in creating a pillar
by stacking blocks scattered on a surface (the same example
has been used throughout this manuscript). Then, we evaluate
the results obtained by using different LLMs to update the
KB with new tests, and finally we describe how to link the
outcome of the framework in a practical setup with 2 robotic
arms in a co-manipulation task in simulation.

A. Multi-Robot Manipulation Setup in Simulation

We provide a KB containing the number of agents and the
actions that they can do, as described in Section III. In order
to obtain a valid plan, i.e., a series of actions that let us move
from the initial state to the goal state, we need to specify
the initial and final states. These states were generated by
an LLM in response to a query in the format represented
by Figure 2. Moreover, we provide a natural language
description of the current state of the the environment and
of what we want the state to be at the end. An example of
the query is show in Figure 2, and a response obtained from
GPT3.5 is shown in Figure 5.

Once we have the complete KB, we can use the SWI-
Prolog interpreter to solve the problem and find a plan. First
we compute a total-order plan (right of Table I) in which all
the actions are executed sequentially. Given the correctness
of the KB, the plan is valid and consistent since it was
obtained through inference steps using Prolog. Then, we
extract the causal relationships between the different actions
by checking the achievers and produce a partial order plan
(the black graph in Figure 3). At this point, we can obtain the
STN by considering the constraints on the actions duration
as negative weighted backwards edges of the graph (in red
in Figure 3) and finally, we can extract a BT, as shown
in Figure 6, which can then be executed.

The BT was then used to coordinate the movements of
two simulated robotic arms by requesting the robot’s motion
according to the resulting schedule. Two different robots,
an UR5e and an UR3e from Universal Robots, are included
in the Gazebo-based physics simulator setup. The UR5e is
adjusted upside down and attached to a workbench, while
the UR3e is mounted on its custom base and it faces the



Fig. 4: (Left) The UI in which we specify the problem we want to solve. (Right) The Gazebo simulation environment. The
arms work together to stack two blocks one on top of the other. A video of the experiment is available at [27].

test_case :- go( [av(a1),av(a2),av(a3),ont(b1,1,1),ont(b2,2,2),ont(b3,3,3),ont(b4,4,4),clr(b1),clr(b2),clr(b3),clr(b4)],
[av(a1),av(a2),av(a3),on(b1,b2,5,5),on(b2,b3,5,5),on(b3,b4,5,5),ont(b4,5,5),clr(b1)]).

Fig. 5: An example response from GPT3.5 given the query in Figure 2.

⇒

→

a1 →

δ(a1, a2) a4

→

a3 →

a2

Legend:

ai Action

→ Sequential

⇒ Parallel

δ(ai) Wait ai

Fig. 6: The BT for the STN obtained in Figure 3.

workbench, as shown in Figure 4. In order to pick and
place objects, both robots mount a SoftRobotics two-finger
gripper. During the task execution (video available in [27]),
the manipulators perform a pick-and-place task to stack
elementary megablocks in defined positions, one on top
of the other, to obtain the required pillar. While the two
megablocks are gripped simultaneously by the two arms,
since they are independent actions, the UR5e waits for the
completion of the UR3e block placement before completing
its own, as the placement of the megablock by the UR3e
is a precondition for the placement of the megablock by
the UR5e. In this way, we demonstrate the capability of the
architecture to produce temporally consistent plans from a
KB, whose initial and final states are generated by a LLM,
and then orchestrate them by means of a BT.

B. LLMs Evaluation

We evaluate the performance of 3 LLMs, namely GPT-
3.5, GPT-4, and BARD. We used GPT APIs to make
tests on ChatGPT and GPT4, whereas we simply used
the prompt-chat for Bard. The APIs were automatically

# of predi-
cates (avg)

# of literals
(avg)

# of error in
predicates (avg)

# of error in
literals (avg)

success
rate

BARD 16.5 33.4 2.4 5.7 0.4

GPT-3.5 16.5 33.4 1.3 3 0.4

GPT-4 16.5 33.4 0.6 1.6 0.8

TABLE III: Large Language Model Evaluation.

called by running Python scripts. We designed 10 different
scenarios, where the framework was assigned the task of
picking and placing a number of boxes ranging from 3
to 5, with a number of manipulators varying from 2 to
4. In the experiments, the LLMs operate under identical
configurations. As depicted in Table III, GPT-4 commits the
least number of errors. The most frequent mistake made by
LLMs is stacking boxes in the wrong order at the correct
coordinates. For instance, the query shown in Figure 2 asks
to stack block b1 above b2, but this may be misinterpreted
by the LLM, which instead produces the opposite predicates:
{ont(b1, 3, 3), on(b2, b1, 3, 3)} The major-
ity of the mistakes occur in the final states.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown a robot-oriented knowledge
representation and planning system based on Prolog. A key
feature of the approach is its effective integration with LLMs,
which simplifies the generation of the initial and final states
for the KB from an informal textual description, and a bump-
less procedure that produces an executable plan to orchestrate
the parallel operations of a set of robotic agents.

Many issues remain open and will require future inves-
tigations. The most important research directions that we
intend to follow are: 1) the expansion of the use of LLMs to
generate the whole KB, including also the list of actions,
and to automate the detection and correction procedure
of errors and logical inconsistencies; 2) the integration of
probabilistic clauses that can be associated with uncertain
events or perceptions (e.g., “This could be a hammer with
0.65 probability”), 3) the dynamic generation of new clauses
and facts when the system comes across an unmodelled
aspect of its operation domain (e.g., object too heavy to
be lifted by one arm), 4) the optimisation of the STN or
of the BT focusing on the temporal span, flexibility and
resilience, and 5) the improvement of the search for the total
plan guiding it with an heuristic.
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