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Yildirim, Y.; Bahar, S.; Ugur, E. Human

Attitudes in Robotic Path

Programming: A Pilot Study of User

Experience in Manual and

XR-Controlled Robotic Arm

Manipulation. Multimodal Technol.

Interact. 2025, 9, 27. https://doi.org/

10.3390/mti9030027

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Human Attitudes in Robotic Path Programming: A Pilot Study of
User Experience in Manual and XR-Controlled Robotic
Arm Manipulation
Oscar Escallada 1,* , Nagore Osa 1 , Ganix Lasa 1 , Maitane Mazmela 1 , Fatih Doğangün 2 , Yigit Yildirim 2 ,
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Abstract: Extended reality (XR) and collaborative robots are reshaping human–robot
interaction (HRI) by introducing novel control methods that enhance user experience (UX).
However, human factors such as cognitive workload, usability, trust, and task performance
are often underexplored. This study evaluated UX during robotic manipulation tasks under
three interaction modalities: manual control, XR-based control at real-time speed (RS), and
XR-based control at reduced safety speed (SS). Twenty-one participants performed a series
of tasks across three scenarios, where we measured usability, workload, flow state, trust,
and agency using a subjective questionnaire adapted from SUS, NASA-TLX, FSS, SoAS, and
Trust in Industrial Human–Robot Collaboration Questionnaire, and objective task metrics
(completion time, errors, and attempts). Our results reveal that RS-based control modes
significantly reduced physical workload and improved usability compared to manual
control. RS control at real-time speed enhanced task efficiency but increased error rates
during complex tasks, while SS mode mitigated errors at the cost of prolonged completion
times. Trust and agency remained stable across all modalities, indicating extended reality
technologies do not undermine user confidence. These findings contribute to the field of
human–robot collaboration by offering insights regarding efficiency, accuracy, and UX. The
results are particularly relevant for industries seeking to optimize safety, productivity, and
human-centric robotic systems.

Keywords: human–robot interaction; extended reality; Industry 5.0; user experience

1. Introduction
In recent years, the technological shifts defined by Industry 5.0 have reshaped modern

manufacturing, with the incorporation of advanced robotic systems playing an essential
role in enhancing operational efficiency, flexibility, and productivity [1]. These advances in
robotics, along with associated digital technologies, are not only reshaping production lines
but also paving the way for more responsive and adaptable industrial ecosystems [2]. Build-
ing upon this foundation, the development of Industry 5.0 marks a transformative shift
in the interaction between human operators and emerging technologies such as robotics
and extended reality (XR). Industry 5.0 places emphasis on human-centric approaches,
highlighting the synergy between advanced technologies and human creativity [3]. This
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paradigm seeks to enhance the quality of human–machine collaboration by integrating
tools that foster seamless, intuitive, and efficient interactions [4–6]. Robots and XR tech-
nologies have emerged as pivotal components in this ecosystem, offering novel methods
for operators to interact with complex systems while maintaining control and oversight [7].

In this context, XR technologies (which encompass augmented reality (AR), virtual
reality (VR), and mixed reality (MR)) have gained prominence for their ability to bridge the
gap between digital and physical environments. By overlaying digital information onto the
real world or immersing users in fully virtual spaces, XR enhances situational awareness,
reduces cognitive load, and facilitates complex task execution [8,9]. Recent studies have
shown that such immersive XR-based interfaces can not only improve accuracy and reduce
mental workload in industrial robot programming but also increase user satisfaction and
perceived control [10,11]. Specifically, Jiang et al. [11] found that interactive AR-based robot
programming reduced training time for novice users, while Walker et al. [10] demonstrated
that providing in situ visualizations and intuitive input methods fostered stronger operator
engagement. Furthermore, Chen et al. [12] highlighted how allowing direct demonstration
of trajectories in AR environments leads to a heightened sense of ownership over the out-
come. Collectively, these findings underscore that well-designed XR systems significantly
enhance user experience in human–robot interaction, offering both safer workflows and
more effective collaboration. For instance, in industrial environments, XR can be employed
to guide operators in real time, enabling them to visualize robotic movements, assess
system states, and execute intricate operations with greater precision [13].

Despite these advancements, the effective integration of robots and XR technologies
into industrial workflows necessitates a nuanced understanding of user experience (UX).
User-centric evaluation methods are essential to identify barriers, optimize interaction
paradigms, and ensure that these technologies align with human capabilities and limita-
tions [14,15]. Enhancing the UX not only improves operational efficiency but also fosters
user acceptance, trust, and satisfaction—critical factors for the successful adoption of
Industry 5.0 technologies [16,17].

This study aims to explore the interplay between operators and robots mediated by
XR, focusing on methods that enhance interaction quality and productivity. By analyzing
UX, this research seeks to provide actionable insights into the design and implementation
of human–robot interaction (HRI) systems within the Industry 5.0 framework.

2. Key UX Factors for XR in Human–Robot Collaboration
The integration of XR and robotics in industrial environments has garnered significant

attention in recent years, driven by the increasing demand for flexible, efficient, and user-
friendly systems. Human–robot interaction (HRI) examines how humans and robots
communicate, collaborate, and coexist within shared environments. In practice, HRI can
span a continuum ranging from traditional cage-based setups, where the robot is isolated
for safety, to full collaboration, in which robots and humans work on the same task in
unison. Collaborative robots—cobots—facilitate these closer interactions by incorporating
advanced sensing, force-limiting capabilities, and intuitive interfaces, enabling safe and
efficient cooperation without the need for traditional safety barriers [18,19].

Human–robot collaboration (HRC) refers to these settings, where humans and robots
work together in real time to achieve common objectives, with robotic systems continuously
adapting to human actions and requirements [20]. Such closely integrated interactions are
often considered the most hazardous, owing to extensive shared workspaces and direct con-
tact between human operators and robotic systems. Traditionally, safety in human–machine
interaction has been predominantly focused on the physical safety [21–23]. However, in
recent years, the psychological aspects of safety, such as experience and familiarity, comfort,
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predictability, transparency, and trust have garnered significant attention in manufacturing
safety reviews [24–27].

Recent advancements have focused on developing interaction paradigms that balance
system autonomy with human control, thereby fostering trust and improving task per-
formance [28]. This evolution opens opportunities to integrate XR technologies, enabling
more seamless and intuitive interaction paradigms within human–robot collaboration.

Wang et al. [29] provide a systematic review of XR-enabled remote human–robot
interaction systems, highlighting current trends and future directions in this field. Their
review also identifies key challenges (including system latency and the need for adaptive,
multimodal, user-centered designs) that must be addressed to further optimize XR-enabled
remote HRI. For instance, Karpichev et al. [30] propose a human-in-the-loop framework
that utilizes XR to facilitate intuitive communication and programming between humans
and robots, enhancing adaptability and task generalization. However, to ensure that such
interactions are truly effective from the human perspective, especially in complex robotic
environments, it is essential to consider both their strengths and limitations. Factors such
as usability, workload, flow state, agency, and trust play pivotal roles in shaping the success
of XR-based human–robot interaction.

Usability serves as the foundation for evaluating XR and robotic systems, as it directly
influences user acceptance and task performance. Standardized frameworks such as the
system usability scale (SUS) [31] have been widely used to measure usability. In XR
environments, where interface design, latency, and responsiveness play a significant role,
ensuring high usability is critical to delivering a seamless UX [17]. Research by Kim
et al. [32] highlights that adaptive and intuitive interfaces tailored to varying skill levels
not only improve usability but also enhance task performance and improve learnability in
industrial settings.

While usability simplifies interaction, workload, measured using the NASA Task Load
Index (NASA-TLX) [33], reflects the cognitive and physical effort required from users
during task execution. XR systems, when properly designed, have the potential to alleviate
workload by streamlining task-related information delivery. For instance, Dünser et al. [34]
demonstrated that extended reality interfaces reduce cognitive load by providing real-time,
context-relevant information. However, systems with high latency or calibration errors
can significantly increase cognitive demands, leading to user frustration and decreased
performance. These findings underscore the importance of balancing usability and task
complexity to optimize workload and UX [33].

Reducing workload and enhancing usability creates conditions conducive to achieving
the flow state, a concept introduced by Csikszentmihalyi [35]. Flow state describes the
experience of complete immersion and engagement in a task, achieved through clear goals,
immediate feedback, and an appropriate challenge–skill balance [36–38]. XR systems, as
shown by Speicher et al. [8], can facilitate flow through immersive environments that
align with these principles, leading to greater task satisfaction and productivity. However,
disruptions such as technical glitches or poorly designed interactions can break this state,
negatively affecting user performance. Therefore, ensuring the stability and reliability of
XR systems is key to maintaining flow state.

Closely linked to usability and flow is the concept of agency, to the subjective experi-
ence of controlling one’s actions and, through them, external events [39–41]. In XR-based
HRI, agency is particularly relevant for maintaining user confidence and engagement. The
sense of agency scale (SoAS) [42] has been widely used to measure this construct, with stud-
ies indicating that higher agency improves satisfaction and task efficiency. In particular, [42]
demonstrate that the SoAS effectively captures individuals’ perceived control over their
actions, and that stronger perceived agency correlates not only with enhanced performance
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but also with more positive subjective experiences. This suggests that designing interfaces
and interactions to bolster users’ sense of agency can lead to better engagement and overall
outcomes. [42]. XR systems can strengthen agency through gesture-based interactions and
real-time feedback mechanisms. However, delays in system responsiveness or design flaws
can erode this sense of control, resulting in disengagement and diminished performance.

Finally, trust plays a crucial role in the acceptance and effective use of XR and robotic
systems. Transparent system behavior and predictable performance are key to building
trust, as Hoffman [28] notes. Trust is reinforced in XR systems through consistent feed-
back, robust error handling, and reliable operations, which enable users to depend on the
technology even in complex scenarios. Importantly, trust interacts dynamically with other
variables—high usability, reduced workload, flow state, and agency all bolster trust, while
excessive cognitive demands or low agency can undermine it.

These variables (usability, workload, flow, agency, and trust) collectively shape the UX
in XR and robotic systems. Despite their potential, challenges such as latency, calibration
issues, and the cognitive demands of immersive environments remain significant.

Aligning these insights with technological capabilities is critical for developing effec-
tive and inclusive HRI solutions for Industry 5.0. To address this, the present study aims to
conduct a comparative analysis of various interaction methods, evaluating key factors such
as usability, workload, flow, agency, and trust. Given that the tested scenario involves direct
physical contact and simultaneous human–robot task execution, it falls within the domain
of human–robot collaboration (HRC), where safety, transparency, and mutual adaptation
are critical. The goal is to determine where XR solutions genuinely enhance human–robot
interaction and identify scenarios where conventional methods still outperform XR-based
approaches. This analysis will provide a comprehensive understanding of how these
technologies can best be utilized to improve collaboration in complex environments.

3. Research Question
The primary objective of this study is to investigate the impact of XR technologies

on HRI during robotic path programming. Specifically, the research explores whether
XR-based interfaces improve HRI compared to manual programming methods, focusing
on both technical performance (e.g., task efficiency, workload, error rates) and human
attitudes (e.g., usability, trust, and overall satisfaction). The main hypothesis of this study
is as follows:

RQ: XR technologies enhance human–robot interaction in robotic path programming by improving
technical performance while positively influencing operator’s experience, such as perceived usability,
trust, and workload compared to manual programming methods.

Additionally, this study considers whether variations in XR interaction speed influence
these outcomes. While not treated as a separate research question, this aspect provides an
exploratory layer to determine whether differences in execution speed (real-time interaction
versus slower/safety mode) affect task performance and user perception. Specifically, we
aim to assess whether slower speeds enhance precision and perceived control or whether
real-time speeds offer operational advantages despite potential trade-offs.

4. Materials and Methods
4.1. Participants

The participants in this study were primarily from Computer Science and Robotics
background, reflecting the industrial context for which collaborative robots (cobots) are
often designed. A total of 21 participants from Turkey took part, including 11 women
and 10 men, with a mean age of 22.76 years (SD = 4.28 years), ensuring a gender balance.
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Importantly, we prioritized diversity within this technically oriented group by including
participants with varying levels of experience in both robotics and XR technologies (see
Appendix A.1). Additionally, participants were asked whether they required contact lenses
(13.6%), glasses (50%), or no visual aids (36.4%), as these factors can sometimes influence
interactions with XR glasses. This segmentation is summarized in Table 1 below.

Table 1. Table of the segmentation of participants.

Experience
Interacting

with

Experience with Extended Reality

Total
XR Glasses XR Mobile Knows What It Is

but Never Used

Experienced 1 1 0 2

Little
experience 2 2 2 6

No experience 5 3 5 13

Total 8 8 7 21

Regarding the experience interacting with robots, we considered No Experience when
the participant has never interacted with a robot. Little experience means that the participant
has at least interacted once with any kind of robot, and Experienced when the participant
has experience interacting with robotic arms while executing a task.

A similar segmentation has been performed with XR. XR glasses on the table means that
the participant has interacted at least once with XR through head-mounted displays (HMD).
XR mobile means that the participant has never used HMDs but has at least interacted with
tablets/mobile phones while experiencing XR. In Knows what it is but never used is when the
participant has never used any kind of XR but has heard about it. On the questionnaire
there was even a lower rating that said: Never interacted and did not know about it until now,
but no participant chose that option.

4.2. Experimental Setup

This study utilized an experimental setup consisting of a UR10 robot and a 160 × 75 cm
table, on which a template with a pre-drawn circuit was placed. Figure 1 shows the ex-
perimental setup in which a participant (1) programs the robot’s path (2) by drawing
an imaginary line on the circuit table (3). The PC screen (4) displays the participant’s
perspective, where a purple line indicates recorded path. Simultaneously, a virtual robot
follows the traced path in real time. Participants were required to perform tasks at three
different levels of difficulty, each executed in three distinct modes. The participants pro-
grammed the robot in these three modes and then observed how the robot replicated the
programmed movements. Subsequent analysis included results derived from observations
and a questionnaire described in a later section.

These are the three levels set for the experiment (see Figure 2):

• Level 1 (easy): The robot was required to follow a flat circuit without leaving the lines,
limited to motion on the x and y axes, without height differences. This level primarily
assessed motion control and served as a familiarization phase for participants.

• Level 2 (intermediate): This level introduced a higher degree of dexterity by incorpo-
rating tactile-sensitive obstacles. Both the participants (during manipulation) and the
robot (during execution) had to avoid these obstacles. If touched, these lightweight
obstacles would either move or fall, providing clear visual feedback.

• Level 3 (advanced): In addition to the challenges of Level 2, this level incorporated
motion along the z-axis, requiring greater precision. A bridge was added that the robot
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had to avoid by moving over it, along with a second bridge featuring a wooden cube.
The robot had to push the cube off the platform, necessitating precise manipulation
and configuration by the participant. This level integrated the general requirements
for robotic manipulation, such as dexterity across all three axes (x, y, z), and precision.

Multimodal Technol. Interact. 2025, 9, x FOR PEER REVIEW 6 of 26 
 

 

Figure 1. Experimental setup. 

These are the three levels set for the experiment (see Figure 2): 

• Level 1 (easy): The robot was required to follow a flat circuit without leaving the 
lines, limited to motion on the x and y axes, without height differences. This level 
primarily assessed motion control and served as a familiarization phase for partici-
pants. 

• Level 2 (intermediate): This level introduced a higher degree of dexterity by incorpo-
rating tactile-sensitive obstacles. Both the participants (during manipulation) and the 
robot (during execution) had to avoid these obstacles. If touched, these lightweight 
obstacles would either move or fall, providing clear visual feedback. 

• Level 3 (advanced): In addition to the challenges of Level 2, this level incorporated 
motion along the z-axis, requiring greater precision. A bridge was added that the 
robot had to avoid by moving over it, along with a second bridge featuring a wooden 
cube. The robot had to push the cube off the platform, necessitating precise manipu-
lation and configuration by the participant. This level integrated the general require-
ments for robotic manipulation, such as dexterity across all three axes (x, y, z), and 
precision. 

Regarding manipulation modes, each participant performed the task using three dis-
tinct methods, with the order of these methods randomized among participants to miti-
gate task familiarity effects. The manipulation modes were: 

• Manual robot manipulation (RE): Participants manually guided the robot to record 
the trajectory using their hands. After recording, participants observed the robotʹs 
execution of the programmed task while standing in front of the table. 

• XR manipulation in real-time speed (RS): Participants used Meta Quest 3 XR 
glasses[43] and the RAMPA (v.1.0) application [44]. The RAMPA application is a soft-
ware tool designed to assist users in programming robot paths by allowing them to 
draw imaginary lines on a circuit table. As users draw, the application displays a 
virtual robot following the traced path in real time, providing immediate visual feed-
back to facilitate precise path programming. The physical robot then replicates the 
movements at the same speed as the participant’s drawing. If the participant draws 
quickly, the robot moves quickly, and if they draw slowly, the robot replicates the 
trajectory at a slower pace. 

1 

2 

3 4 

Figure 1. Experimental setup.

Multimodal Technol. Interact. 2025, 9, x FOR PEER REVIEW 7 of 26 
 

 

• XR manipulation in safety speed (SS): Like the RS mode, participants used the XR 
glasses and application to draw the robotʹs trajectory. However, in this mode, the 
physical robot executed the movements at a speed five times slower than the partic-
ipant’s drawing speed. 

When conducting the test, the manual vs. RS comparison helps validate our research 
question regarding the improvement of UX in extended reality. Meanwhile, the RS vs. SS 
comparison allows us to analyze whether the robot’s speed influences the UX. The entire 
test sequence is presented in Table 2. 

 

Figure 2. Different levels of difficulty for the setup. 

Table 2. Task levels and different human-robot interactions. 

Interaction with the Robot Speed of the Robot Level of the Task 

Manual 
robot  

manipulation 
Same speed as user (RE). 

Level 1: Easy, motion control (x,y) 
Level 2: Medium, dexterity (x,y) 
Level 3: Medium, dexterity and precision 
(x,y,z) 

XR-based 
robot 

manipulation 

Same speed as user (RS). 

Level 1: Easy, motion control (x,y) 
Level 2: Medium, dexterity (x,y) 
Level 3: Medium, dexterity and precision 
(x,y,z) 

Safety speed: X5 times slower  
than user (SS). 

Level 1: Easy, motion control (x,y) 
Level 2: Medium, dexterity (x,y) 
Level 3: Medium, dexterity and precision 
(x,y,z) 

4.3. Variables, Measures and Evaluations 

Table 3 summarizes the variables and the corresponding measures. The question-
naire utilized for this study is presented in Appendix A.2. This questionnaire was 

Figure 2. Different levels of difficulty for the setup.

Regarding manipulation modes, each participant performed the task using three
distinct methods, with the order of these methods randomized among participants to
mitigate task familiarity effects. The manipulation modes were:
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• Manual robot manipulation (RE): Participants manually guided the robot to record
the trajectory using their hands. After recording, participants observed the robot’s
execution of the programmed task while standing in front of the table.

• XR manipulation in real-time speed (RS): Participants used Meta Quest 3 XR
glasses [43] and the RAMPA (v.1.0) application [44]. The RAMPA application is a
software tool designed to assist users in programming robot paths by allowing them
to draw imaginary lines on a circuit table. As users draw, the application displays
a virtual robot following the traced path in real time, providing immediate visual
feedback to facilitate precise path programming. The physical robot then replicates the
movements at the same speed as the participant’s drawing. If the participant draws
quickly, the robot moves quickly, and if they draw slowly, the robot replicates the
trajectory at a slower pace.

• XR manipulation in safety speed (SS): Like the RS mode, participants used the XR
glasses and application to draw the robot’s trajectory. However, in this mode, the phys-
ical robot executed the movements at a speed five times slower than the participant’s
drawing speed.

When conducting the test, the manual vs. RS comparison helps validate our research
question regarding the improvement of UX in extended reality. Meanwhile, the RS vs. SS
comparison allows us to analyze whether the robot’s speed influences the UX. The entire
test sequence is presented in Table 2.

Table 2. Task levels and different human-robot interactions.

Interaction with the Robot Speed of the Robot Level of the Task

Manual
robot

manipulation
Same speed as user (RE).

Level 1: Easy, motion control (x,y)

Level 2: Medium, dexterity (x,y)

Level 3: Medium, dexterity and precision
(x,y,z)

XR-based
robot

manipulation

Same speed as user (RS).

Level 1: Easy, motion control (x,y)

Level 2: Medium, dexterity (x,y)

Level 3: Medium, dexterity and precision
(x,y,z)

Safety speed: X5 times slower
than user (SS).

Level 1: Easy, motion control (x,y)

Level 2: Medium, dexterity (x,y)

Level 3: Medium, dexterity and precision
(x,y,z)

4.3. Variables, Measures and Evaluations

Table 3 summarizes the variables and the corresponding measures. The questionnaire
utilized for this study is presented in Appendix A.2. This questionnaire was developed
by adapting items from various standardized instruments. The selection of questions was
tailored to the specific tasks and evaluation criteria of the study. To simplify the process
for participants, the rating scale was normalized to a 21-point Likert scale [45], using the
NASA-TLX framework as a basis. Below, the analyzed variables are presented.
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Table 3. Items of the used questionnaire.

Variable Tool Number of Items

Usability System usability scale 6
Workload NASA-TLX 6
Flow state Flow state scale 4

Agency Sense of agency scale 2

Trust Trust in Industrial Human–Robot
Collaboration Questionnaire 3

• Usability: For usability, a subset of 6 questions (Q1–Q6) from the system usability scale
(SUS) [31] was used. The Cronbach’s alpha score of 0.81 demonstrates good internal
consistency, indicating that these items effectively capture perceived ease of use and
usefulness of the system. Despite using only part of the original SUS scale, the results
confirm the reliability of this measure.

• Workload: The workload construct was evaluated using all 6 questions (Q7–Q12)
from the NASA-TLX [46]. The resulting Cronbach’s alpha of 0.74 indicates acceptable
internal consistency. This score suggests that the selected items reliably measure the
cognitive and physical demands placed on users during task execution.

• Flow: The flow construct was measured using 4 questions (Q13–Q16) from the flow
state scale (FSS) [47]. The Cronbach’s alpha for this construct was 0.32, reflecting poor
internal consistency. This result may stem from the limited number of items used or
variability in participant responses. Future studies should consider revising or expanding
the flow-related items to better capture the immersion and engagement experience.

• Agency: For agency, 2 questions (Q17–Q18) from the sense of agency scale (SoAS) [42]
were used. The Cronbach’s alpha score of 0.73 indicates acceptable internal consistency,
suggesting that the selected items adequately measure the user’s perceived control
and influence within the system.

• Trust: The trust construct was assessed using 3 questions (Q19–Q21) from the Trust in
Industrial Human–Robot Collaboration Questionnaire [48]. Cronbach’s alpha for this
construct was 0.58, indicating relatively low internal consistency. This suggests a need
for refining the measurement items or including additional questions to assess user
trust in the system comprehensively.

• Technical measurements: In addition to the questionnaire, several technical measure-
ments were recorded during the user testing. These measurements included the number
of errors made, the time taken for task execution, and the number of attempts required
for each task. These measurements were gathered via observations and video recordings.

Finally, after completing all levels using the three modes of interaction, participants
were asked to rank their preference for the modes from 1 to 3, with 1 indicating the most
preferred mode and 3 the least preferred.

5. Results
In this section, the findings from the study are presented, focusing on both quantitative

and qualitative analyses of user interactions with the system under three modes of control:
manual control (RE), XR control at normal speed (RS), and XR control at safety speed (SS).
The results include a comparative analysis of questionnaire responses to evaluate user
perceptions, qualitative metrics assessing usability, workload, flow, agency, and trust, and
performance metrics that capture task efficiency and accuracy. Additionally, the section
explores differences among user segmentations and overall preferences for the three modes
of system use. These analyses provide a comprehensive understanding of the system’s
impact on UX, performance, and preferred usage mode.
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5.1. RQ: Do XR Technologies Enhance Human–Robot Interaction in Robotic Path Programming by
Improving Technical Performance and Operator’s Experience?

Here, we present the results of the questionnaire, focusing on user perceptions of the
three modes of control: manual control (RE), XR control at normal speed (RS), and extended
reality control at safety speed (SS). Mean scores for each questionnaire item were calculated
to identify trends and differences in user responses.

A one-way analysis of variance (ANOVA) was also performed for each questionnaire
item to assess differences among the three modes. As shown in Figure 3, significant
differences were found in 6 out of the 21 items (p < 0.05):

• Q1. Desire to use the system frequently: A significant effect of mode on participants’
desire to use the system frequently was observed (F(2,N) = 7.21, p = 0.0016). Both XR
control modes elicited a higher desire to use the system compared to manual control.

• Q2. Perceived ease of use: The perceived ease of use differed significantly among
modes (F(2,N) = 15.74, p < 0.001). Participants rated the XR control modes as easier to
use than the manual control mode.

• Q5. Learning curve: Beliefs about the ease with which most people could learn to
use the system varied by mode (F(2,N) = 3.88, p = 0.026). The XR control modes were
perceived as having a shorter learning curve.

• Q6. Laboriousness of use: Significant differences were found in the perceived labori-
ousness of the system (F(2,N) = 23.13, p < 0.001), with the manual control mode rated
as more laborious.

• Q8. Physical activity required: The physical effort required differed significantly
among modes (F(2,N) = 135.11, p < 0.001). The manual control mode required more
physical activity than the XR control modes.

• Q11. Effort to achieve performance: A significant difference was observed in the effort
participants felt they had to exert to achieve their performance level (F(2,N) = 10.73,
p = 0.0001), with less effort reported under XR control modes.
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Post hoc analyses indicate that the significant differences were between the manual
control mode and both XR control modes, with no significant differences between RS and
SS. This suggests that while XR control enhances UX over manual control, the variation
in speed within XR control modes does not significantly impact user perceptions of these
items. No significant differences were found for the remaining 15 items (p > 0.05), indicating
that the mode of control did not significantly affect participants’ perceptions in these areas.

5.2. Qualitative Metrics

• Usability: The results for usability, measured through six questions (Q1–Q6), reveal
a clear advantage for the XR-based control modes (RS and SS) compared to manual
control (RE). Participants rated the XR modes significantly higher in perceived ease of
use (Q2) and the learning curve (Q5), indicating that XR control was both intuitive
and easier to learn. Additionally, the manual mode was perceived as more laborious,
as evidenced by the lower scores in Q6, which assessed the effort required to use
the system. The radar chart (Figure 4) visually supports these findings, showing
consistently higher scores for XR-based modes across all usability items. These results
highlight the XR modes’ ability to streamline interactions and reduce the friction
typically associated with manual control, making them the preferred choice in terms
of user-friendliness and efficiency.
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• Workload: Workload was evaluated using six items (Q7–Q12) from the NASA Task
Load Index (NASA-TLX), and the results indicate significant differences between
the control modes. The manual mode (RE) consistently imposed a higher cognitive
and physical workload on participants. For example, participants reported increased
mental demands in Q7, as the manual control required greater focus on decision-
making, coordination, and precision. Similarly, Q8 highlighted higher physical effort
for manual tasks, where controlling the system required strenuous movements. Q11
further reinforced this trend, with users feeling they had to work harder (both mentally
and physically) to achieve satisfactory performance.

In contrast, the XR-based modes (especially SS with its safety speed) demonstrated
significantly lower workload scores, as can be seen in Figure 5. This suggests that XR
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technologies effectively reduce task-related demands, improving overall efficiency and
reducing user fatigue.
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• Flow State: The results for flow state, assessed through items such as Q13 (challenge in
relation to skills) and Q15 (focused attention), reveal a relatively balanced perception
across the three modes of control: manual (RE), XR at normal speed (RS), and XR at
safety speed (SS). Notably, in Q13, the manual control mode (RE) scored slightly higher,
suggesting that participants felt the challenge provided by direct interaction with
the robot was better aligned with their perceived skills. However, despite potential
limitations of the XR modes (such as the intrusiveness of wearing XR glasses, weight of
the equipment, and the experience of perceiving reality through a screen) participants
rated their ability to stay focused and immersed in the tasks similarly to manual
control. This lack of a significant difference can be viewed as a positive indicator:
the XR-based interactions, even with their physical and perceptual demands, did not
substantially hinder the participants’ ability to achieve flow states. These results (see
Figure 6) suggest that XR systems can deliver experiences comparable to real-world
interactions, demonstrating their potential to support user engagement and focus on
human–robot interactions.

• Agency: The sense of agency, assessed through questions such as Q17 (sense of control)
and Q18 (logical consequences of actions), did not show significant differences across
the control modes. Although the XR modes offered intuitive interfaces and a slightly
higher perception of control, these differences were not substantial enough to conclude
a clear advantage over the manual mode. Overall, participants did not perceive
substantial changes in their ability to effectively influence the system, suggesting that
the type of control had minimal impact on this dimension. See Figure 7.

• Trust: This item, assessed through items such as Q19 (comfort with robot move-
ments) and Q21 (system reliability), did not show substantial differences between
the three modes of control as can be seen in Figure 8: RE, RS, and SS. While par-
ticipants expressed slightly higher levels of trust in the XR modes, the differences
were not pronounced enough to suggest a clear preference for one mode over an-
other. This lack of significant variation could be attributed to several factors. First,
participants may have had similar expectations for system reliability across all modes,
as the robot’s fundamental capabilities and behaviors did not change significantly
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between modes. They also were in a controlled environment, and this could have
helped to avoid feelings of distrust. Additionally, the XR environment, despite in-
troducing perceptual differences (e.g., wearing a headset and viewing the physical
world through a screen), likely maintained sufficient predictability and consistency to
prevent substantial trust disparities.

Multimodal Technol. Interact. 2025, 9, x FOR PEER REVIEW 12 of 26 
 

 

comparable to real-world interactions, demonstrating their potential to support user 
engagement and focus on human–robot interactions. 

Figure 6. Flow state results extracted from the questionnaire. 

• Agency: The sense of agency, assessed through questions such as Q17 (sense of con-
trol) and Q18 (logical consequences of actions), did not show significant differences 
across the control modes. Although the XR modes offered intuitive interfaces and a 
slightly higher perception of control, these differences were not substantial enough 
to conclude a clear advantage over the manual mode. Overall, participants did not 
perceive substantial changes in their ability to effectively influence the system, sug-
gesting that the type of control had minimal impact on this dimension. See Figure 7. 

Figure 7. Agency results extracted from the questionnaire. 

Figure 6. Flow state results extracted from the questionnaire.

Multimodal Technol. Interact. 2025, 9, x FOR PEER REVIEW 12 of 26 
 

 

comparable to real-world interactions, demonstrating their potential to support user 
engagement and focus on human–robot interactions. 

Figure 6. Flow state results extracted from the questionnaire. 

• Agency: The sense of agency, assessed through questions such as Q17 (sense of con-
trol) and Q18 (logical consequences of actions), did not show significant differences 
across the control modes. Although the XR modes offered intuitive interfaces and a 
slightly higher perception of control, these differences were not substantial enough 
to conclude a clear advantage over the manual mode. Overall, participants did not 
perceive substantial changes in their ability to effectively influence the system, sug-
gesting that the type of control had minimal impact on this dimension. See Figure 7. 

Figure 7. Agency results extracted from the questionnaire. Figure 7. Agency results extracted from the questionnaire.

Another possible cause is the relatively short duration of the tasks, which may have
limited participants’ ability to fully experience and evaluate differences in system reliability
and comfort. Overall, the relatively uniform levels of trust across modes suggest that XR
technologies, despite their added complexity, do not negatively impact users’ confidence
in system performance. However, it also indicates that improvements in XR design, par-
ticularly in addressing physical discomfort or perceptual challenges, might help further
enhance trust in these systems.
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• Correlation among variables: The following section analyzes the correlation matrices
obtained from the questionnaire data under the three experimental conditions (RE, RS,
and SS), with a particular focus on identifying meaningful patterns of relationships
among the different questions. In case of need, the correlation matrixes of all three
cases can be found in the Supplementary Materials. In line with established guidelines
for interpreting correlation magnitudes [49] we considered coefficients exceeding 0.70
to represent strong relationships.

When examining the manual control condition (RE), the correlation structure suggests
a more fragmented pattern, with fewer strongly interrelated clusters of questions. In RE,
some expected relationships between ease of use (Q2), self-sufficiency (Q3), system integra-
tion (Q4), and trust (Q21) are weaker and less consistent. This fragmentation implies that
participants’ perceptions of usability, workload, and trust do not strongly coalesce into a
unified, easily interpretable set of dimensions under manual control. Moreover, the most
prominent correlation is a negative one: under manual conditions, trust (Q21) demonstrates
a strong negative association with perceived unpredictability (Q18) (r ≈ −0.87). This rela-
tionship suggests that trust in the system’s reliability (Q21) cannot coexist with perceived
unpredictability (Q18). The more participants feel the robot’s responses make sense, the
more they trust it to do what it is supposed to do. Conversely, unpredictable or illogical
consequences severely undermine trust.

In contrast, when comparing these patterns to the RS and SS conditions, some shifts
appear. Under XR conditions, both at normal and safety speeds, items related to system
understanding, performance satisfaction, and trust show intensified clustering and generally
higher correlation values. For instance, in RS, Q2 (ease of use) and Q3 (need for technician
support) become highly correlated (r ≈ 0.75), reinforcing the notion that perceived complexity
and self-sufficiency remain a core dimension of the UX. Moreover, Q4 (well-integrated func-
tions) correlates strongly with Q10 (successful performance), Q12 (feeling stressed/irritated),
Q17 (full control), Q18 (logical consequences), and Q21 (trust), often with correlations above
r ≈ 0.75. This suggests that when participants perceive the RS system’s functions as coher-
ent and well-integrated, they also report higher satisfaction with their performance, greater
feelings of control and reliability, and fewer negative emotional responses, reflecting a more
cohesive and psychologically supportive interaction experience.

Similarly, in SS conditions, the patterns mirror those of RS, with slight variations.
The correlations remain high between Q2 and Q3, and Q4 also emerges as a strong hub
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connecting trust, performance, and perceived control. The similarity between RS and
SS matrices indicates that the XR-based conditions introduce a more stable, internally
consistent perception of the system. Participants seem to integrate their judgments of
usability, emotional comfort, and trust into closely linked constructs, in contrast to the more
dispersed associations observed under manual control.

These findings suggest that transitioning from manual to XR-based control methods
fosters a more cohesive network of user perceptions, ultimately contributing to a more
integrated understanding of the system’s usability, reliability, and emotional impact.

5.3. Performance Metrics

• Task Completion Time

As can be seen in Figure 9, significant differences in task completion times were
observed among the three modes across all tasks. For Task 1, participants completed the
task significantly faster in the RS mode (M = 45.67 s, SD = 17.65) compared to the RE
(M = 89.71 s, SD = 19.41) and SS modes (M = 84.14 s, SD = 27.97), with a p-value of 0.0001.
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In Task 2, the SS mode resulted in longer completion times (M = 135.57 s, SD = 43.31)
compared to the RE (M = 86.48 s, SD = 20.88) and RS modes (M = 81.62 s, SD = 43.60),
p = 0.000025. Similarly, for Task 3, participants were faster in the RS mode (M = 76.19 s,
SD = 31.14) than in the RE (M = 98.43 s, SD = 25.90) and SS modes (M = 148.76 s, SD = 42.34),
with a p-value of 0.0001.

These results indicate that the RS mode generally allowed for quicker task completion,
while the SS mode, operating at reduced speed, increased completion times, especially in
more complex tasks.
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• Number of Attempts

The number of attempts required to complete the tasks differed significantly in Tasks
2 and 3 (see Figure 10). In Task 2, participants required more attempts in the RS (M = 2.05,
SD = 1.25) and SS modes (M = 1.71, SD = 1.16) compared to the RE mode (M = 1.00,
SD = 0.00), with a p-value of 0.0048. For Task 3, a similar pattern was observed: RS
(M = 1.90, SD = 1.02) and SS modes (M = 1.90, SD = 1.27) required more attempts than the
RE mode (M = 1.05, SD = 0.21), p = 0.013.
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No significant differences were found in Task 1 (p = 0.591), suggesting that the mode
of control did not affect the number of attempts in simpler tasks.

• Number of Errors

Significant differences in the number of errors were also found in Tasks 2 and 3 (see
Figure 11). In Task 2, participants made more errors in the RS (M = 2.29, SD = 2.14) and SS
modes (M = 1.67, SD = 1.64) compared to the RE mode (M = 0.62, SD = 1.09), with a p-value
of 0.0026. In Task 3, errors were again higher in the RS (M = 2.33, SD = 0.82) and SS modes
(M = 2.14, SD = 1.81) than in the RE mode (M = 0.71, SD = 0.82), p = 0.0001.
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For Task 1, no significant differences were observed in the number of errors across
modes (p = 0.642), indicating that task simplicity may mitigate error rates regardless of
control mode.

The performance analysis reveals that while the RS mode enhances efficiency by reduc-
ing task completion times, it may also increase the number of attempts and errors in more
complex tasks. The SS mode, designed to improve safety by reducing operational speed,
resulted in longer completion times without a significant reduction in errors compared to
the RS mode.

In Tasks 2 and 3, which were more complex, participants under RS control modes (both
RS and SS) made more errors and required more attempts than under manual control. This
suggests that while RS control facilitates faster performance, it may compromise accuracy
and precision in tasks that demand higher levels of dexterity or cognitive processing.

5.4. Differences Among Segmentations

Apart from analyzing the results altogether, different participant profiles have been
analyzed in search of differences among them.

In the manual control mode (RE), participants without XR experience reported higher
perceptions of laboriousness (Q6) and discomfort (Q19, Q20), highlighting the physical
and cognitive effort required for manual operation. However, robot-experienced users
tended to rate the manual mode more favorably for ease of use (Q2) and learning (Q5). This
suggests that while manual control offers more precision for experienced participants, it
remains challenging for those less familiar with such systems, particularly those unfamiliar
with XR interfaces, as previous experiences affect the overall experience.

In the RS control mode (normal speed), trends again show that participants without XR
experience found the system more demanding, reporting higher values for laboriousness
(Q6) and discomfort (Q19, Q20). This indicates an initial adaptation barrier to the RS
interface for inexperienced users. By contrast, robot-experienced participants reported
greater ease of use (Q2) and a shorter learning curve (Q5). Interestingly, concerns regarding
speed (Q20) were less pronounced in this group, likely due to their ability to anticipate and
manage robotic trajectories more effectively. Despite these minor challenges for novices, RS
was generally viewed as reducing physical strain compared to manual control.

The safety speed (SS) mode received mixed feedback. Robot-experienced participants
generally adapted well to the slower, safety-focused mode, reporting lower perceptions
of effort (Q6) and fewer concerns about speed (Q20). However, XR-inexperienced users
reported higher levels of laboriousness and frustration, particularly with the slower speed.
While SS successfully reduces physical strain, its perceived lack of responsiveness may
have led inexperienced users to view it as inefficient or less intuitive to control.

In summary, we can say that robot-experienced participants consistently adapted
better to all modes, benefiting from familiarity with robotic systems, which allowed them to
manage both speed and control more effectively. In contrast, XR-inexperienced users faced
more challenges, particularly in manual control and slower XR modes, where the learn-
ing curve and perceptions of inefficiency contributed to increased discomfort and effort.
Although the differences are not substantial, the results suggest that further refinements
(such as better calibration, speed responsiveness, and intuitive feedback mechanisms) are
needed to optimize XR systems for users with varying experience levels.

5.5. Overall Preference Metrics

Regarding the final question on user preferences among the three control modes, the
mean rankings revealed a clear hierarchy of preference. The RS mode received the highest
preference with the lowest mean ranking (M = 1.38), followed by the SS mode (M = 2.00),
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and the RE mode had the highest mean ranking (M = 2.62), indicating the least preference.
The median rankings reinforced these findings, with RS having a median of 1, SS having a
median of 2, and RE having a median of 3. The modes of the rankings were consistent with
the medians: RS (Mode = 1), SS (Mode = 2), and RE (Mode = 3).

Chi-squared goodness-of-fit tests were performed to determine whether the observed
ranking frequencies differed significantly from a uniform distribution (i.e., no preference
among the modes). The results were statistically significant for all three modes:

• Manual control (RE): χ2 = 14.00, p = 0.000456
• XR control normal speed (RS): χ2 = 14.00, p = 0.000456
• XR control safety speed (SS): χ2 = 7.71, p = 0.01056

The p-values for all modes were below the conventional alpha level of 0.05, indicat-
ing that the observed rankings were not due to chance and that there were significant
preferences among the modes [50].

The ranking data in Figure 12 reveal a strong user preference for the XR control at
normal speed (RS). A majority of participants (15 out of 21) ranked RS as the best mode,
underscoring its favorable reception. In contrast, the manual control mode (RE) was
predominantly ranked as the worst, with 15 participants assigning it the lowest rank. The
RS control at safety speed (SS) was mostly ranked in the middle position, suggesting a
moderate preference.
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When incorporating qualitative data from participants’ free-text responses, two re-
curring themes clearly emerge. The first concerns the manual control mode (RE), which
numerous participants describe as physically demanding or requiring excessive force.
Some participants explicitly state that it was “hard to use due to physical force needed”
or that they became “exhausted” when controlling the robot manually. Others note that
manual manipulation was “physically challenging” and “laborious”, and that it would
likely prevent certain demographic groups (e.g., elderly individuals, children, or those
with limited physical ability) from using the system comfortably. These comments align
with the ranking data, where participants were predominantly assigned the manual control
mode as the lowest rank.

A second theme relates to the safety speed in the XR mode (SS), which participants
repeatedly describe as “too slow” and “boring”. Several comments highlight frustration
with waiting for the robot to complete its tasks, with one user stating explicitly that “safety
speed was a little too slow” another calling it “unnecessarily slow”, and others reporting
feelings of annoyance and boredom. These qualitative impressions further support the



Multimodal Technol. Interact. 2025, 9, 27 18 of 24

ranking data, where the safety speed mode was often placed in an intermediate position,
reflecting a compromise between control and comfort but not an entirely preferred solution.

5.6. Minimal Detectable Effect (MDE) Analysis

While the above results indicate several significant differences among the three modes
(RE, RS, SS), we also conducted an approximate minimal detectable effect (MDE) analysis
to gauge the sensitivity of our repeated-measures design. In essence, the MDE represents
the smallest true effect that the study, given its sample size and design, can reliably detect.

Using a simplified paired t-test approximation (assuming α = 0.05, power = 0.80,
and a moderate correlation r = 0.50 among repeated measures), we estimated an MDE
corresponding to Cohen’s d = 0.60—commonly viewed as a moderate to large effect
size. Interpreted practically, this means our study design (N = 21 participants, all of
whom experienced each mode) has about an 80% chance of detecting differences of at
least 0.60 standard deviations in measures such as task completion time, error rates, and
questionnaire ratings.

Consequently, the significant results we observed (e.g., Q1, Q2, Q5, completion times)
likely reflect effects that reach or exceed this moderate threshold. The non-significant
findings in the remaining 15 questionnaire items may indicate either genuinely negligible
differences or differences smaller than our study could reliably detect. Similarly, the
pronounced preferences revealed by the chi-squared tests (e.g., strong favoring of RS mode)
align with effects that appear larger than our estimated MDE.

In summary, although a sample of 21 participants in a within-subjects design provided
a feasible approach for hands-on robotic testing, it remains possible that smaller, subtler
effects were not captured.

6. Discussion
This study provides valuable insights into the central research question, which investi-

gates whether XR technologies enhance HRI in robotic path programming by improving
technical performance and operator experience. The findings from the questionnaires,
performance metrics, and ranking analysis collectively highlight a nuanced understanding
of user preferences and the efficacy of XR technologies in robotic manipulation tasks.

The questionnaire results demonstrated a clear preference for XR control modes over
manual control. Six out of twenty-one items showed significant differences favoring the XR
modes, particularly in aspects related to ease of use, reduced physical effort, and overall
desire to use the system frequently. Participants perceived the XR modes as less laborious
and more user-friendly, aligning with previous research suggesting that XR interfaces
enhance user satisfaction by simplifying interactions and reducing physical strain [9,34].

The ranking analysis further substantiated this preference. Most participants ranked
the RS mode as their top choice, indicating a strong inclination towards XR control at
normal speed. Despite the SS mode being designed with safety considerations through
reduced speed, it was predominantly ranked second, suggesting that while safety is valued,
efficiency and ease of use are more influential in determining user preference.

• The performance data presented a more complex picture. While the RS mode signifi-
cantly reduced task completion times, particularly in simpler tasks, it also resulted in
an increased number of attempts and errors in more complex tasks (Tasks 2 and 3). The
SS mode, intended to mitigate errors through slower operation, did not significantly
reduce errors compared to the RS mode and led to longer completion times. These
errors stemmed from both the system and the interaction itself. Due to calibration
and the robot’s 3D model, the system had a safety offset and an additional offset
from a scale error of about 1:1.02. As a result, at certain points in the circuit, the
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robot would touch an obstacle even when participants executed the task correctly.
Nevertheless, the most frequent error was the issue with hand tracking. In some cases,
because of the participants’ hand position, the headset would lose tracking and the
tracing would stop, sometimes requiring them to start over. Since these errors were
largely system-based, testing made it possible to identify them, as well as the fact that
tracking becomes more complicated with smaller hands. These improvements will be
implemented at a later stage.

The discrepancy between user preference and performance outcomes suggests that
participants favored the XR modes despite experiencing higher error rates and requiring
more attempts in complex tasks. One possible explanation is that users prioritize the
intuitive and engaging nature of XR interfaces over objective performance metrics, a
phenomenon observed in technology acceptance studies [16]. The immersive experience
and reduced physical effort associated with XR control may enhance user satisfaction to
the extent that they overlook the increased errors and attempts.

The preference for XR modes, even in the face of suboptimal performance metrics,
indicates a strong user acceptance of XR technology in robotic manipulation. However, the
increased errors and attempts in complex tasks highlight areas for improvement. Calibra-
tion issues, interface design, and system responsiveness may contribute to these perfor-
mance deficits. Enhancing the precision and reliability of XR systems could mitigate errors,
thereby aligning user satisfaction with optimal performance outcomes.

• The findings suggest that users are willing to tolerate certain inefficiencies in exchange
for the benefits offered by XR control. This tolerance underscores the importance of
user-centered design in XR technologies, where the focus is on creating interfaces that
are not only functional but also engaging and easy to use [17]. Developers should
consider incorporating adaptive features that adjust to task complexity, providing
additional guidance or automation in more challenging tasks to reduce errors.

7. Conclusions
While this study has several limitations, it provides valuable insights into the role of

XR technologies in enhancing human–robot interaction for robotic path programming. One
primary limitation of this study is the modest sample size (n= 21) in a repeated-measures
design, which influences the minimal detectable effect (MDE). A post hoc approximation
suggested that our design can reliably detect moderate or larger effects (roughly Cohen’s
d ≥ 0.60) with about 80% power. Consequently, the significant results we observed for
certain questionnaire items and performance metrics likely reflect differences at or above
this threshold. However, non-significant findings do not necessarily imply the absence
of any effect; smaller differences (below the MDE) may remain undetected due to limited
statistical power. Future studies with larger or more diverse samples could help determine
whether subtler differences exist, particularly for questionnaire items and performance
measures that showed non-significant trends in the present work.

In addition, the study was conducted in a controlled laboratory environment rather
than in a real-world industrial workplace. While the controlled setting allowed for precise
measurements and minimized extraneous variables, it may not fully capture the complex-
ity, unpredictability, and dynamic interactions present in actual industrial settings. This
limitation could affect the generalizability of the results to real-world applications. Fur-
thermore, although our participant group was intentionally selected to reflect the technical
background common in industrial contexts, the relatively homogenous sample (primarily
Computer Science and Robotics students) may not fully represent the broader population
of industrial workers. Finally, potential carryover effects or learning effects in the repeated-
measures design, despite counterbalancing, may also influence the observed outcomes.
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Future research should address these limitations by employing larger, more diverse sam-
ples in field-based studies to validate and extend these findings under real-world conditions.

Besides the aforementioned limitations, this study demonstrates that XR technologies
hold significant promise for advancing human–robot interaction in robotic path program-
ming. The results demonstrate a clear preference for XR-based controls, with participants
highlighting their ease of use, reduced physical effort, and overall superior usability. Among
these, XR control at normal speed (RS) was the most favored due to its balance of efficiency
and user-friendliness. This preference underscores the potential of XR technologies to provide
intuitive and engaging interaction paradigms in robotic manipulation tasks.

In terms of task performance, XR control significantly reduced task completion times
for simpler tasks, showcasing its ability to enhance efficiency. However, in more complex
scenarios requiring higher levels of precision and dexterity, XR control led to increased
errors and attempts. The safety speed mode mitigated some of these errors but at the cost of
prolonged task durations, illustrating the trade-off between operational speed and accuracy.
These findings suggest that while XR control improves performance in certain contexts,
its application in complex tasks requires further refinement to address challenges such as
system calibration and interface responsiveness.

The study also revealed that XR systems excel in usability by reducing both physical
and cognitive demands compared to manual control. Participants reported feeling less
fatigued and more confident in using XR technologies, which aligns with their broader
potential to streamline interactions in industrial settings. Despite these advantages, tasks
requiring heightened precision highlighted areas for improvement in XR system design,
particularly in achieving greater alignment between user actions and system outputs.

Interestingly, trust and perceived control, or agency, remained relatively consistent
across all control modes, suggesting that XR technologies do not inherently compromise
user confidence. This finding is significant as it indicates that, even in its current state,
XR can support user engagement without introducing uncertainty or discomfort. Never-
theless, further enhancements in the design of XR systems could bolster trust and agency,
particularly in scenarios demanding high reliability.

To build on these results, future research should incorporate biometric analyses to
complement subjective evaluations. Physiological data can offer objective insights into user
experiences, potentially revealing differences between interaction modes that are not fully
captured by current metrics. By leveraging these data, researchers can develop adaptive
XR systems that optimize usability and performance across a range of task complexities.

Overall, the findings emphasize the promise of XR technologies in fostering human-
centric interaction in Industry 5.0. While XR control modes offer distinct advantages in
terms of usability and UX, their integration into complex industrial tasks will benefit
from additional refinements. Optimizing XR systems to balance efficiency, precision, and
reliability will be key to unlocking their full potential in advancing seamless human–robot
collaboration in diverse applications.
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Appendix A. Questionnaires
Appendix A.1. Socio-Demographic Questionnaire

Next, you will be asked questions of a demographic nature. Please fill in your data.
What gender do you identify with?

o Woman
o Man
o Prefer not to say
o Other

Indicate your age:
Which is your role?
Do you use eyeglasses or contact lenses?

o Yes, eyeglasses
o Yes, contact lenses
o No

Select the answer that best fits your previous experience with a robot.

o I have never interacted with a robot.
o I have previously interacted at least once with a robotic arm while executing a task.
o I have experience in interacting with a robotic arm while executing a task.

Select the answer that best fits your previous experience with Augmented Real-
ity (AR).

o I have never interacted with AR and did not know about it until now
o I have never interacted with AR, but I know what it is.
o I have interacted at least once with AR via mobile/tablet.
o I have interacted at least once with AR through glasses.

Appendix A.2. Questionnaire for Qualitative Assessment for UX

Questions should be answered in a 21-point Likert scale.

1. I think that I would like to use this system frequently.
2. I thought the system was easy to use.
3. I think that I would need the support of a technician person to be able to use this system.
4. I found the various functions in this system were well integrated.
5. I would imagine that most people would learn to use this system very quickly.
6. I found the system very laborious to use.
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7. The mental and perceptual activity required was high (e.g., thinking, deciding, calcu-
lating, remembering, looking, searching, etc.).

8. The physical activity required was high (e.g., pushing, pulling, turning, controlling,
activating, etc.).

9. I felt high time pressure due to the rate or pace at which the tasks occurred.
10. I think I was successful in accomplishing the goal of the task set by the experimenter.

I am satisfied with my performance.
11. I had to work hard (mentally and physically) to accomplish my level of performance.
12. I felt insecure, discouraged, irritated, stressed and annoyed during the task.
13. I was challenged, but I believed my skills would allow me to meet the challenge.
14. I knew clearly what I wanted to do.
15. My attention was focused entirely on what I was doing.
16. I was aware of how well I was performing.
17. I am in full control of what I do.
18. The consequences of my actions feel like they don’t logically follow my actions.
19. The way in which the robot moved made me feel uncomfortable.
20. The speed with which the robot picked and released the components made me

feel uneasy.
21. I felt I could rely on the robot to do what it was supposed to do.

** Extra question after all 3 modes were used:
Classify from 1 (most suitable) to 3 (less suitable) the 3 ways you interacted with

the robot and explain why. Add any kind of comment regarding the experiment aswell.
Robot controlled manually
Robot controlled with AR (same speed)
Robot controlled with AR (different speed)

Comments:

References
1. Gao, Z.; Wanyama, T.; Singh, I.; Gadhrri, A.; Schmidt, R. From industry 4.0 to robotics 4.0—A conceptual framework for

collaborative and intelligent robotic systems. In Procedia Manufacturing; Elsevier B.V.: Amsterdam, The Netherlands, 2020;
pp. 591–599. [CrossRef]

2. Soori, M.; Dastres, R.; Arezoo, B.; Jough, F.K.G. Intelligent robotic systems in Industry 4.0: A review. J. Adv. Manuf. Sci. Technol.
2024, 4, 2024007-0. [CrossRef]

3. Xu, M.; David, J.M.; Kim, S.H. The Fourth Industrial Revolution: Opportunities and Challenges. Int. J. Financ. Res. 2018, 9, 90–95.
[CrossRef]

4. Sheridan, T.B. Human-Robot Interaction; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2016. [CrossRef]
5. Wang, X.V.; Kemény, Z.; Váncza, J.; Wang, L. Human–robot collaborative assembly in cyber-physical production: Classification

framework and implementation. CIRP Ann. Manuf. Technol. 2017, 66, 5–8. [CrossRef]
6. Kemény, Z.; Beregi, R.; Nacsa, J.; Kardos, C.; Horváth, D. Human–robot collaboration in the MTA SZTAKI learning factory facility
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