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 A B S T R A C T

Today robots must be safe, versatile, and user-friendly to operate in unstructured and human-populated 
environments. Dynamical system-based imitation learning enables robots to perform complex tasks stably and 
without explicit programming, greatly simplifying their real-world deployment. To exploit the full potential 
of these systems it is crucial to implement closed loops that use visual feedback. Vision permits to cope with 
environmental changes, but is complex to handle due to the high dimension of the image space. This study 
introduces a dynamical system-based imitation learning for direct visual servoing. It leverages off-the-shelf 
deep learning-based perception modules to extract robust features from the raw input image, and an imitation 
learning strategy to execute sophisticated robot motions. The learning blocks are integrated using the large 
projection task priority formulation. As demonstrated through extensive experimental analysis, the proposed 
method realizes complex tasks with a robotic manipulator.
1. Introduction

Modern robots must be accessible to everyone, as they are rapidly 
spreading in everyday life environments, from industries [1] to ho-
tels [2] and hospitals [3]. It is expected that a growing number of inex-
perienced end-users, like children, patients, or elderly people, ask for 
robots with easy-to-use, friendly, and modular interfaces, endowed with 
adaptive skills. To meet these requirements, recent advancements in 
robotics demonstrate the great potential of Machine Learning (Machine 
Learning (ML)).

From a control perspective, ease of use and adaptability can be 
obtained with vision-based IL. On one side, IL allows one to easily 
implement robotic tasks without specific codes [4,5], but by sim-
ply following a few demonstrations. Dynamical Systems (DSs) handle 
the imitation strategy by keeping the stability properties of classical 
controllers. Such approaches successfully generate complex kinematic 
motion from previous demonstrations, see [6–9]. On the other, vision-
based control like VS [10,11] generates robot behaviors from extero-
ceptive information, thus taking into account possible changes in the 
environment. In recent work [12,13], DS-based IL and VS are combined 
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to realize the so-called Imitation Learning Visual Servoing (ILVS). Such 
a scheme provides dual benefits: (i) additional and complex skills can 
be imitated (and not explicitly coded) in the VS law; (ii) the use of 
vision enables adaptive imitation strategies. In this way, the limitations 
of the original law are overcome by leveraging the information of the 
demonstrations, e.g., for realizing a visual tracker without an explicit 
target motion estimator [14].

From a perception point of view, it would be desirable to have 
modular and transferable blocks that could be easily adapted to the 
specificity of the deployed robot and the considered task. In this 
context, DL has been demonstrated to outperform classical computer 
vision methods [15], also in the robotics domain [16]. Indeed, many 
approaches based on DL show great performance in detecting and 
tracking complex objects, e.g., the well-known You Only Look Once 
(YOLO) algorithm [17,18]. These approaches exhibit robustness, ver-
satility, and even generalization capability, and can solve complex 
perception tasks in the robotic domain [15,16]. However, sporadic mis-
interpretations of the raw sensor data, or hallucinations, typical of DL 
approaches [19], could be disruptive in a closed-loop control scheme. 
https://doi.org/10.1016/j.robot.2025.104971
Received 13 June 2024; Received in revised form 17 January 2025; Accepted 6 Ma
vailable online 20 March 2025 
921-8890/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
rch 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/robot
https://www.elsevier.com/locate/robot
mailto:auddy@tu-berlin.de
mailto:antonio.paolillo@idsia.ch
mailto:justus.piater@uibk.ac.at
mailto:matteo.saveriano@unitn.it
https://doi.org/10.1016/j.robot.2025.104971
https://doi.org/10.1016/j.robot.2025.104971
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2025.104971&domain=pdf
http://creativecommons.org/licenses/by/4.0/


S. Auddy et al. Robotics and Autonomous Systems 190 (2025) 104971 
Fig. 1. Our work combines off-the-shelf deep learning strategies to detect objects in 
the clutter, and imitation learning to realize complicated trajectories, e.g., dropping a 
cube into a cup on an untidy table. The large projection formulation combines the two 
machine learning components and ensures convergence to a given target.

Indeed, the measurement accuracy required by a precise control action 
sets severe requirements, which might be difficult to fulfill by DL-based 
perception. Specific systems like YOLO, for example, are very reliable 
in recognizing an object and its position in the camera field of view. 
However, they fall short in estimating its right orientation, preventing 
full 6D pose regulation or tracking.

This work aims to realize a robust, modular, stable yet simple 
VS scheme, taking the good from both data-driven and model-based 
approaches. We propose a VS architecture that leverages IL and DL 
paradigms to exploit the potential of state-of-the-art detectors and 
overcome their limitations in control loops. More in detail, we propose 
to use an off-the-shelf DL-based detector to obtain a rough but robust vi-
sual feedback and refine it by performing IL from a few demonstrations 
of the desired VS behavior. The learning components are combined in 
a formal model-based control structure. In this way, we target robotic 
applications (like dropping a sugar cube in a cup of tea on an untidy 
table, as exemplified in Fig.  1) proposing an easy solution to complex 
perception problems, and simple generation of complicated trajectories.

The remainder of the paper is organized as follows. Section 2 
discusses the related literature, whereas the technical background of 
our work is presented in Section 3. Our method and the experimental 
setup used to validate it are detailed in Sections 4 and 5, respectively. 
The approach is validated with an extensive experimental analysis, 
whose results are presented in Section 6. Section 7 concludes the paper 
with final remarks.

2. Related work

In our vision of adaptive and easy-to-use robots, we must design 
visual controllers that are straightforward to deploy. In practice, we 
aim to avoid specific coding to (i) extract the required feedback from 
dense images and (ii) generate sophisticated trajectories.

Impressive off-the-shelf software releases, e.g., YOLO [17], have 
been shown to detect objects robustly. It is worth mentioning the large 
body of work that aims at estimating from vision the target object’s 
pose, see, e.g., [20–23], which can also serve as a control feedback. 
However, all these approaches implement standalone perception sys-
tems, i.e., they are unaware of the underlying control structure, and 
their output might not be accurate enough for control purposes. Specific 
pose estimators for vision-based control have also been proposed [24–
28], but these approaches are sensitive to the operating conditions 
and usually need intense retraining to operate in different scenarios. 
Furthermore, pure perception algorithms delegate the generation of 
sophisticated trajectories to the control block.
2 
One possibility consists of coupling perception and control together 
in end-to-end learning fashion [29–31]. However, end-to-end methods 
cannot guarantee stability properties and robustness to disturbances. 
This is particularly challenging if the robot needs to operate in dynami-
cally changing environments and/or close to the human. Coarse-to-fine 
imitation learning [32] combines closed- and open-loop execution to 
perform complex manipulation tasks. One way to ensure stability is to 
maintain the formal structure of the visual controller, e.g., preserving 
the VS formalism. In the context of our work, DVS is particularly 
interesting because it implements VS using direct image measurement, 
avoiding explicit feature extraction. Examples are VS schemes that use 
photometric moments [33], pixel luminance [34], histograms [35], or 
Gaussian mixtures [36] as control feedback. However, in these ap-
proaches, the potential of DL is not fully exploited. In [37], an artificial 
Neural Network (NN) is trained using the knowledge of VS to produce 
geometrically interpretable features. In [38], an autoencoder is learned 
to reduce the dimensionality of the image space, and an interaction 
matrix is directly computed from the network using auto differentiation 
and utilized in a VS law. Liu et al. [39] simplify the YOLO architecture 
to speed up object detection, while Luo et al. [40] propose a top-down 
feature detection network, and both use the predicted features in a 
VS scheme. These approaches perform well with VS tasks from images 
without performing classical feature extraction but do not execute 
complex movements. Our work, instead, provides a unified solution 
that generates sophisticated robot motion in addition to enhancing the 
robustness of the perception module.

This paper presents an approach to solve the perception problem 
and the generation of complex trajectories simultaneously, in the con-
text of vision-based controllers. The proposed framework overcomes 
the limitations of the literature by proposing an IL-DVS strategy that in-
tegrates off-the-shelf DL-based perception modules with IL in a control 
theoretic framework.

3. Background

Image-based VS [10] is a more than twenty-year-old established 
technique to regulate a camera to a desired pose through visual in-
formation. The most basic law computes 6D velocity commands as 
𝒗 = −𝜆𝑳̂+𝒆 [10], zeroing an error 𝒆 ∈ R𝑓  defined on the image; 
𝜆 is a scalar gain; 𝑳̂+ ∈ R𝑓×6 is the pseudo-inverse of the so-called 
interaction matrix, relating the camera velocity to the time derivative 
of the visual feedback. The interaction matrix normally relies on the 
camera parameters that can be obtained through calibration proce-
dures, and other information like the features’ depth that needs to be 
estimated or approximated. Indeed, the hat over the matrix indicates 
the approximation due to unknown 3D parameters.

VS can be executed together with other tasks, using the priority 
scheme established by the null-space projector [41]: 
𝒗𝑒 = −𝜆𝑳̂+𝒆 + 𝑷𝝈. (1)

The matrix 𝑷 = 𝑰6 − 𝑳̂+𝑳̂ is a null-space projector, and 𝝈 ∈ R6 is the 
desired velocity realizing the secondary task. The main limitation of (1) 
is that, in normal working conditions, the dimension of the feedback is 
always greater or equal to the dimension of the task (i.e., 𝑓 ≥ 6) [10]. 
Under these circumstances, there is not much room in the null space 
of the primary task to execute any other secondary task. Therefore, it 
has been proposed to use the norm of the error 𝜂 = ‖𝒆‖ in the primary 
task [42] and to realize a prioritized control scheme in the following 
form 
𝒗𝜂 = −𝜆𝜂𝑳̂+

𝜂 + 𝑷 𝜂 𝝈, (2)

where, similarly to the classic VS scheme (1), 𝑷 𝜂 is a null-space 
projector and 𝝈 ∈ R6 is the desired velocity realizing the secondary 
task. The matrices of interest can be retrieved in closed form [42], and 
are reported here for convenience:

𝑳̂+
𝜂 = 𝜂 𝑳̂⊤𝒆

⊤ and 𝑷 𝜂 = 𝑰6 −
𝑳̂⊤𝒆 𝒆⊤𝑳̂

⊤ .

𝒆⊤𝑳̂𝑳̂ 𝒆 𝒆⊤𝑳̂𝑳̂ 𝒆
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Fig. 2. State-of-the-art DL-based systems like YOLO can be used to detect the features of an object of interest on a raw monocular image robustly. Examples of features are the 
vertices (denoted with ‘C1’, ‘C2’, ‘C3’, and ‘C4’) of the bounding box detected around the image of a cup. However, such detection systems fail to capture the correct object 
orientation. In the three snapshots, YOLO provides very similar feature values that correspond to three very different relative camera–object orientations producing a side (a), 
oblique (b), and top view (c) of the cup.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
 Note that the control law (2) drives the system towards the original 
desired behavior, as 𝒆 → 𝟎 for 𝜂 → 0. The operator 𝑷 𝜂 is called
large projector as the law (2) ensures enough room in the null space 
to achieve secondary tasks. In practice, regulating the scalar norm 
instead of the vector error releases degrees of freedom during the 
transient for other secondary tasks. Using simple Lyapunov arguments, 
it is possible to show that the law (2) is locally stable and that the 
secondary task does not impact the stability. If the secondary velocities 
𝝈 are not compatible with the primary task, they are simply ignored 
and not executed, as the effect of the construction of the projector 
operator [41]. In (2) the presence of singularities requires the use of 
a switching strategy around 𝜂 = 0: 
𝒗 = 𝛼(𝜂) 𝒗𝜂 +

(

1 − 𝛼(𝜂)
)

𝒗𝑒 (3)

where 𝛼 is a scalar variable smoothly changing from 1 to 0 in the 
vicinity of 𝜂 = 0, allowing a switch to the classical law (1) from (2) [42].

This control system has been recently used to implement a stable 
IL [13] to realize complex VS tasks. In particular, the main task 
error 𝜂 stably drives the system towards steady-state convergence; the 
secondary task is used to imitate demonstrated velocities 𝝈 during the 
transient. In this work, we use such a control structure to handle the 
output of a state-of-the-art DL-based feature detector and overcome 
its limitations by leveraging the information of a few demonstrations, 
using the IL paradigm, as detailed in the following section.

4. Approach

Our objective is to exploit the control redundancy offered by the 
large projector formalism (2) to integrate DL and IL for direct VS. We 
exploit the great potential of state-of-the-art DL-based object detectors, 
which are treated as an underlying raw detector. Furthermore, our 
framework uses IL to look at previous demonstrations to overcome the 
limitations of DL-based detectors. The scheme further exploits IL to 
realize complex trajectories. In this section, we explain in detail the DL 
and IL learning components, and how they are combined using the large 
null-space projector control structure. More in detail, we first present 
and formulate the perception problem in Section 4.1, which regards 
the limitation of the used detectors in the control context; then, we 
present our solution to the problem introducing the imitation strategy 
(in Section 4.2) and the whole control scheme (Section 4.3) of our 
approach.

4.1. DL-based detection and its limits

The DL-based detector is a pre-trained NN that is fed with raw 
camera images and provides as output a measure of the object in the 
form of visual features 
𝒇 = 𝒎 (𝒊), (4)
𝜽

3 
where 𝒊 ∈ R3𝑤ℎ is a vectorized colored image with a size of 𝑤 × ℎ
pixels, 𝒎 is the detector model, and 𝜽 ∈ R𝑝 denotes the parameters 
of the pre-trained model; the output 𝒇 ∈ R𝑚 contains features of the 
detected objects, such as the corners of its bounding box measured on 
the image (see Fig.  2). Following the classic VS rationale, such features 
are compared with a set of desired values, denoted with 𝒇 ∗, to provide 
a measure of the visual error, from which the control action evolves. 
Indeed, the desired set of features is obtained by the model fed with a 
reference desired image 𝒊∗, i.e., 𝒇 ∗ = 𝒎𝜽(𝒊∗). Therefore, the visual error 
to be considered in the standard VS law (1) is computed as 
𝒆 = 𝒇 − 𝒇 ∗, (5)

whereas its norm, to be used in the large projection formulation (2), is 

𝜂 = ‖𝒇 − 𝒇 ∗
‖ (6)

where ‖⋅‖ denotes the Euclidean norm.
State-of-the-art systems, such as the YOLO algorithm [17] con-

sidered in our work, can perform high-frequency and robust feature 
detection. However, such features are not truly informative of the real 
pose of the observed object and, thus, not enough for full servoing 
of the camera pose. Typically, the bounding boxes detected by YOLO 
are rectangles centered on the image of the object of interest and 
aligned to the image borders. Such bounding boxes do not include 
any information about the object orientation, as shown in Fig.  2. An 
extended version of YOLO, YOLOv8 [43], computes bounding boxes 
that are oriented in the plane of the image. However, even in this case, 
the detected bounding box features do not contain information about 
the complete orientation of the detected object in all three rotation 
axes. Thus, they are insufficient for controlling the full 6D pose of the 
camera and its motion in the Cartesian space. One possible solution 
would be to refine the model 𝒎𝜽 by fine-tuning the parameters 𝜽. 
However, this solution requires engineering work and the intervention 
of specialized scientists. Furthermore, the achievement of satisfactory 
results remains challenging. Our solution, instead, proposes to learn 
how to overcome these limitations of the off-the-shelf DL detection 
module from given demonstrations of the desired task.

4.2. Overcoming the detection limits through imitation

To overcome the limitations of DL-based detectors like YOLO, we 
leverage the information contained in a set of human-demonstrated 
trajectories. In particular, the corrective action for servoing the 3D ori-
entation can be imitated from demonstrations of the full VS behavior. 
Such demonstrations are contained in a dataset with this shape: 
 =

{

𝒇 𝑛
𝑡 ,𝒑

𝑛
𝑡 , 𝒓

𝑛
𝑡
}𝑇 ,𝑁
𝑡,𝑛 , (7)

where the subscripts 𝑡 and 𝑛 denote the 𝑡th sample of the 𝑛th demon-
stration, respectively; 𝑁 is the total number of demonstrations and 
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Fig. 3. The proposed framework for IL-DVS exploits a detection model (a frozen DL network, implemented by YOLO) to extract features from raw images robustly and IL 
(implemented as a fine-tuned NODE network) to realize complex trajectories and overcome the limitation of the detection model. The large projection formulation merges the 
output of the detection and imitation strategy in a closed-loop control law resulting in accurate and converging robot movements.
𝑇  is the length (expressed as the total number of samples) of each 
demonstration; 𝒇 indicates the visual features vector (as defined in 
Section 4.1), and 𝒑 ∈ R3 is the robot’s end-effector’s position. The end-
effector orientation 𝒓 ∈ R3 is obtained by projecting a unit quaternion 
𝒒 ∈ S3 into the tangent space placed at the goal quaternion using the so-
called logarithmic map [44]. Such quantities are obtained by showing 
the full desired behavior to the robot by using, e.g., teleoperation 
or kinesthetic teaching. During the collection of demonstrations, the 
object of interest is placed at a fixed location w.r.t. the robot, and the 
object is always maintained in the camera field of view.

The IL strategy is realized by augmenting the detection model with 
additional layers. More in detail, we augment the detector architecture 
with a Neural Ordinary Differential Equation (NODE) solver [45] used 
for IL. The additional NODE layers are trained on the dataset . NODE 
has previously been used for IL [46] because it can be trained easily 
with only a few demonstrations, is extremely fast during inference, and 
exhibits accurate empirical performance for real-world full 6 degrees-
of-freedom trajectory learning tasks [47]. The lack of mathematical 
stability guarantees of the trajectories predicted by a stand-alone NODE 
is addressed in our approach by the large projector formalism that 
guarantees that the position trajectory of the robot will not diverge, 
as discussed in Section 5. Hence, we do not use other alternatives 
such as [48] that assure stability but have a much slower inference 
speed [46].

NODE assumes that the training data are instances of a nonlinear 
dynamical system that maps a generic input state 𝒙 into an output that 
consists of its time derivative 𝒙̇. In our setting, the state at time sample 
𝑡 is 𝒙𝑡 =

(

𝒇⊤
𝑡 ,𝒑

⊤
𝑡 , 𝒓

⊤
𝑡
)⊤. To accurately approximate the underlying 

dynamics, NODE optimizes a set of parameters 𝝑 by minimizing a sum-
of-square-error loss. It is worth mentioning that, having projected unit 
quaternions in the tangent space, we can readily use the dataset  as 
in (7) to train NODE. This is a common strategy in robotics [44,49–51], 
which is also effective for NODE [46]. After training NODE, the rotation 
component is transformed back into unit quaternions using the so-
called exponential map [44,47]. While training NODE, in each iteration 
we extract from the 𝑁 demonstrations in  a short contiguous segment 
of length 𝑇𝑠, obtained by drawing from  elements at random temporal 
locations 𝑇 , 𝑇 ≪ 𝑇  [46]. We then concatenate each element of 
𝑠 𝑠 𝑠

4 
into the vectors 𝒙𝑛𝑡 =
(

𝒇 𝑛
𝑡
⊤,𝒑𝑛𝑡

⊤, 𝒓𝑛𝑡
⊤
)⊤
, 𝑡 = 1,… , 𝑇𝑠, 𝑛 = 1,… , 𝑁 . Given 

the input vectors 𝒙𝑛𝑡 ,∀𝑡, 𝑛, NODE uses its internal neural network 𝒏𝜗
(called target network) to produce derivatives of the input that are then 
numerically integrated to produce a predicted trajectory 𝒙̂𝑛𝑡 ,∀𝑡, 𝑛. For 
training NODE, we used the mean squared error loss , defined as:

 = 1
2

𝑁
∑

𝑛=1

𝑇𝑠
∑

𝑡=1
‖𝒙𝑛𝑡 − 𝒙̂𝑛𝑡 ‖

2
2

= 1
2

𝑁
∑

𝑛=1

𝑇𝑠
∑

𝑡=1
‖𝒇 𝑛

𝑡 − 𝒇̂ 𝑛
𝑡 ‖

2
2 + ‖𝒑𝑛𝑡 − 𝒑̂𝑛𝑡 ‖

2
2 + ‖𝒓𝑛𝑡 − 𝒓̂𝑛𝑡 ‖

2
2 . (8)

Ultimately, the trained NODE’s target network is the following model 
𝝈 = 𝒏𝝑

(

𝒇̂ , 𝒑̂, 𝒓̂
)

(9)

that is initialized with the initial state of the system comprised of 
the output 𝒇 0 of the pre-trained detection model (i.e., YOLO) and the 
initial robot’s position 𝒑0 and tangent space orientation 𝒓0. As output, 
it produces the robot velocity 𝝈 ∈ R6, which is the time derivative of 𝒑
and 𝒓, imitating the complex trajectories demonstrated in the dataset. 
In subsequent steps of the robot’s motion, NODE evolves in an open-
loop fashion its internal belief of the current state of 𝒇̂ , 𝒑̂, and 𝒓̂, while 
keeping on predicting the velocity 𝝈.

4.3. Merging DL and IL with the large projector

The DL-based detection model and the NODE target network are 
deployed within the robot control loop, as shown in the schematic 
of our approach (Fig.  3). Given the desired and current image, the 
DL-based detector extracts the visual features, as in (4), which are 
then used to compute the visual error 𝒆 and its norm 𝜂. These values 
are needed to compute the primary task in (3). The lower priority 
(secondary) task considers the corrective velocity 𝝈 as regressed from 
the NODE target network (9).

In our scheme, the pre-trained YOLO model represents the DL-based 
detector. The higher-priority task uses the current features (detected 
from the camera image) to adapt to changes in the object’s location. 
This feedback term also ensures convergence to the desired visual 
features 𝒇 ∗ (i.e., 𝒆 → 0 for 𝑡 → +∞). At the same time, the NODE 
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network realizes an open-loop IL strategy that lets the robot execute 
more complex motions without affecting the convergence.

5. Experimental setup

In this section, we describe in detail our setup, including the hard-
ware and software systems used in our experiments. We describe how 
we collect demonstrations, train NODE, and specify the metrics used 
for evaluation.

5.1. Hardware and software components

We use a Franka Emika Panda robot, a 7-degrees-of-freedom robotic 
arm. It features advanced force sensing and collision detection capabil-
ities, making it safe and suitable for manipulation tasks in collaborative 
environments. The robot is fixed on a tabletop and equipped with an 
Intel RealSense D435 camera at the end effector. We run our image 
detection pipeline on a computer with an Intel i5-7640X CPU, 32 GB 
RAM, and an NVIDIA GeForce RTX 4060 Ti GPU. The robot control 
software runs on a separate computer with a real-time OS kernel on 
the same network.

Our software is implemented using ROS noetic and we use the
franka_example_controllers2 package to communicate with 
the robot. The ROS interface accepts pose-level input, which we obtain 
by integrating the velocity command, computed as in (2) Furthermore, 
we experimentally verified that position and orientation tasks are de-
coupled in (2). This is because the features from YOLO (obtained from 
the squared bounding box) do not contain information on the orien-
tation; recall Fig.  2. Therefore, as a difference from the general block 
diagram in Fig.  3, the velocity output of NODE is split into its linear and 
angular parts; the first actually enters the large projection formulation, 
whereas the latter goes directly to the robot. This implementation 
detail implies that the control structure maintains the robot stability 
in position, while the execution of the orientation is delegated to the 
mere imitation strategy. Nevertheless, it is worth mentioning that in 
our experiments, we observe that, with few demonstrations, the robot 
can perform safe behaviors even in orientation.

We use the realsense2_camera3 package to communicate with 
the camera and run YOLO with the darknet_ros4 package, capturing 
RGB camera images with a size of 640 × 480 pixels at a framerate of 
30 Hz.  We use the standard calibration procedures provided by the
cv25 Python library to determine the camera’s intrinsic parameters 
(consisting of the focal length and the central point). Instead, to de-
termine the extrinsic camera parameters (i.e., the pose of the camera 
with respect to the robot’s gripper), we use the aruco_ros6 package 
and the cv2 library. NODE is implemented and trained in PyTorch. Our 
open-source code, including the necessary software dependencies and 
calibration scripts, is available at https://github.com/sayantanauddy/
il-dvs.

5.2. YOLO detector

The YOLO detector in our setup (see Fig.  3) uses the yolov2-
tiny [18] model pretrained on the COCO dataset [52]. The underlying 
YOLO network can be easily changed to any of the other pre-trained 
models provided by the darknet_ros4 package. In our experiments, 
we select the object of interest (e.g., the mouse or the cup) from the 
list of all objects detected by YOLO and use the detected features of 
this object for VS.

2 https://wiki.ros.org/franka_example_controllers.
3 https://wiki.ros.org/realsense2_camera.
4 http://wiki.ros.org/darknet_ros.
5 https://opencv.org/.
6 https://wiki.ros.org/aruco_ros.
5 
Fig. 4.  Initial (left) and final images (right) captured by the robot camera in the 
experiments with the mouse (top) and the cup (bottom). Desired visual features are 
shown in blue and denoted with the letter ‘‘G’’, whereas the current visual features 
are the green letters ‘‘C’’.  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

The rectangular bounding boxes originally predicted by YOLO often 
show significant variations in aspect ratio and vertex positions, even 
in consecutive frames that appear visually identical. These spurious 
changes cause abrupt jumps in the computed visual error that can dis-
rupt closed-loop control dynamics and impede target convergence. This 
issue is particularly critical near the end of the robot’s trajectory, where 
the current bounding box nearly overlaps with the target bounding box, 
potentially leading to convergence problems. Therefore, we convert the 
rectangular bounding boxes into squares with side lengths equal to the 
larger dimension of the original rectangle while maintaining the same 
center point. To further mitigate noise in the detected visual features 
(i.e., vertices of the bounding box), we apply average filtering over 
the past 50 frames. As the object of interest is not subject to rapid 
movements in the camera frame, smoothing the error signal facilitates 
convergence without compromising the robot’s speed, as demonstrated 
in the supplementary video.7

We use the vertices of the resulting bounding box as features in our 
VS scheme. In the presentation of our results, such features are denoted 
with ‘‘C𝑖’’ whereas their desired counterparts are ‘‘G𝑖’’, with 𝑖 = 1,… , 4.

5.3. Collection of demonstrations

For training NODE, we collect demonstrations via kinesthetic teach-
ing [5]. The object under consideration is placed in a specific location, 
and a human user physically guides the robot’s end-effector from an 
initial pose to the desired final pose. We collect two sets of demonstra-
tions corresponding to two different objects. In the first set, a computer 
mouse is placed on the table with the robot’s camera looking down at 
the mouse; kinesthetic demonstrations are provided so that the image 
of the mouse is rotated 90◦ clockwise in the final pose of the robot. 
The latter set of demonstrations is collected using a cup. In the initial 
pose for these demonstrations, the camera looks side-on at a cup on the 
table; in the final one, the robot’s end-effector is positioned on top of 
the cup with the camera looking down. See Fig.  4 for a visual reference 
of the initial and final poses for the mouse and cup demonstrations. 
Each set contains four demonstrations used to train a NODE (one for 
each set).  Each demonstration consists of a sequence of 500 steps. 

7 https://youtu.be/b0lviYlXarI.

https://github.com/sayantanauddy/il-dvs
https://github.com/sayantanauddy/il-dvs
https://github.com/sayantanauddy/il-dvs
https://wiki.ros.org/franka_example_controllers
https://wiki.ros.org/realsense2_camera
http://wiki.ros.org/darknet_ros
https://opencv.org/
https://wiki.ros.org/aruco_ros
https://youtu.be/b0lviYlXarI
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Fig. 5.  Position trajectories of demonstrations provided for the ‘‘Centering the mouse 
in the image’’ (left) and ‘‘Dropping an object in the cup’’ (right) tasks. Diversity is 
introduced by starting from different initial poses and also through the differences 
between each kinesthetic demonstration.

Fig. 6. The object position used during the collection of the demonstrations is the one 
at the center, whereas the four novel object positions used for the evaluation are 15
cm off the center.

In each set, the object’s position remains unchanged but diversity is 
introduced into the collected data by starting each demonstration from 
a different pose. Furthermore, manual kinesthetic demonstrations result 
in different trajectories and also introduce diversity into the training 
data. The position trajectories of the demonstrations collected for the 
two tasks are depicted in Fig.  5. 

5.4. NODE training

The NODE target network predicts the derivatives of the inputs, and 
during training, numerical integration is used to generate trajectories 
from the predictions [46]. We use a NODE target network with 2 hidden 
layers containing 256 neurons each and ReLU activations. In each 
demonstration 𝑛 and each step 𝑡 of the training data, the inputs and 
outputs of the NODE are 10-dimensional, consisting of the upper left 
and lower right vertices of the bounding box (i.e., the visual features) 
𝒇̂ 𝑛
𝑡 ∈ R4 in image coordinates normalized to lie within [0.0, 100.0], the 

position (in cm) of the robot’s end-effector in the task space 𝒑𝑛𝑡 ∈ R3, 
and the rotation vector 𝒓𝑛𝑡 ∈ R3 obtained by projecting the orientation 
quaternions of the end-effector to the local tangent space, as described 
in Section 4.2. Following [46], we scale the rotation vectors by a 
constant factor of 100.0 so that all input features are of comparable 
magnitudes. For each recorded demonstration set (mouse and cup), we 
train a NODE for 2×104 iterations with a learning rate of 5×10−4 using 
the loss defined in (8).

Note that the sides of the bounding boxes detected by YOLO are 
always parallel to the image sides (the image coordinates of only the 
upper left and lower right vertices of the bounding boxes are predicted). 
Consequently, the visual features that are recorded to train the NODE 
are also 4-dimensional. Our VS scheme uses a general representation 
of a bounding box consisting of the features corresponding to all 4 
6 
vertices. Therefore, during inference, we compute the 8-dimensional 
visual features by deriving the coordinates of the upper right and lower 
left vertices from the YOLO predictions.

5.5. Evaluation protocol

Our analysis compares the performance of three VS schemes. The 
first is denoted with IIL and uses a NODE instance trained on the 
demonstrations to control the robot in an end-to-end fashion. The 
second one is a classic VS scheme where YOLO provides the required 
visual feedback; following the literature [34,35], we call it DVS, as it is 
a direct approach considering the whole image as input. Finally, our 
proposed method, augmenting the ILVS scheme [12] with DL-based 
direct measurement, is called IL-DVS. It is worth mentioning that, for a 
fair comparison, all the approaches are fed with the square and filtered 
bounding boxes computed as discussed in Section 5.2.

We conduct separate experiments for the mouse and the cup. For 
each experiment, we evaluate the performance of the three schemes for 
five different object positions: one as in the demonstrations, and four 
unseen positions, as shown in Fig.  6. We run each test for 𝑇 = 700 time 
steps, where 𝑇  is the demonstration length, and measure the norm of 
the visual error. and the end-effector position and orientation error at 
the final step of the experiment.

All errors are computed at the final step of the robot’s trajectory. 
In particular, the visual error norm 𝜂 is computed using (6). The 
end-effector position error is computed as 

𝛿 = ‖𝒑𝑇 − 𝒑𝑔‖2 (10)

where 𝒑𝑔 ∈ R3 is the Cartesian position of the robot at the last step of 
the demonstration (i.e., the ground truth desired position) and 𝒑𝑇 ∈ R3

is the final position reached during the evaluation. The orientation 
error is computed using the orientation 𝒒𝑇 ∈ S3 of the robot in the 
last step of the experiment and 𝒒g ∈ S3 the orientation at the end of the 
demonstration (i.e., the ground truth desired orientation). The measure 
of the orientation error is computed as 

𝜀 = ‖

‖

‖

log
(

𝒒𝑇 ⊗ 𝒒̄g
)

‖

‖

‖2
(11)

where log(⋅) denotes the logarithmic map [44], 𝒒̄𝑔 denotes the con-
jugation of quaternion 𝒒𝑔 , whereas the symbol ‘⊗’ is the quaternion 
product operator. Note that the position error 𝛿 is not computed for 
novel object positions as there is no ground truth end-effector position 
𝒑𝑔 for these object positions. However, the relative orientation of the 
robot’s end-effector with respect to the object at the end of execution 
is expected to be the same irrespective of whether the object is placed 
at the demonstrated or novel locations. This enables us to measure the 
orientation error 𝜀 for trained as well as novel object positions.

Furthermore, for the cup experiment, we measure the success of 
dropping a small object into the cup at the end of the robot’s motion. 
Since resetting the robot after every evaluation may introduce some 
stochasticity, we evaluate each method on each object position three 
times. Finally, we also perform a qualitative evaluation of our IL-DVS 
scheme in a cluttered scene where an object is to be dropped into a cup 
at different positions among several other objects.

6. Experimental results

During the evaluation of the different approaches described in 
Section 5.5, the same trained NODE is used in our IL-DVS approach as 
well as in IIL where NODE controls the robot in an end-to-end way. This 
section presents the results of the different approaches in the mouse and 
cup experiments. Examples of the presented experiments can be viewed 
in the supplementary video.8
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Fig. 7. Centering the mouse in the image: the average norm of the final visual error (left), position (center), and orientation error (right) achieved with the three schemes, starting 
from similar trained positions or novel ones. All errors are computed at the final step of the robot’s trajectory. Note that the end-effector position error cannot be computed for 
the novel positions. Colored boxes show the means and error bars show the 95% confidence interval. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
Fig. 8. Dropping an object in the cup: the average norm of the final visual error (left), position (center), and orientation error (right) achieved with the three schemes, starting 
from similar trained positions or novel ones. All errors are computed at the final step of the robot’s trajectory. Note that the end-effector position error cannot be computed for 
the novel positions. Colored boxes show the means and error bars show the 95% confidence interval.  (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
Fig. 9.  Centering the mouse in the image with novel mouse locations: initial and 
final images reached with the different methods.  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

6.1. Centering the mouse in the image

The goal of the first set of experiments is to move the robot such that 
the image of the mouse (whose visual features are shown in green in 
Fig.  9) coincides with its desired image (corresponding to a desired set 
of features, shown in blue in Fig.  9). Note that the task also requests the 
robot camera (and end-effector) to rotate in order to reach the desired 
relative camera–mouse pose. We evaluate each of the three schemes 
(DVS, IIL, IL-DVS) on five different object positions, as described in 

8 https://youtu.be/b0lviYlXarI.
7 
Section 5.5, and report the overall results in Fig.  7. DVS achieves low 
visual errors but fails to control the orientation correctly. IIL achieves 
low orientation errors but cannot adapt to novel object positions lead-
ing to a high visual error. In contrast, our IL-DVS approach exhibits a 
low visual error, can adapt to novel object positions, and controls the 
robot orientation properly.

More in detail, DVS achieves the lowest visual error as VS with 
YOLO alone can position the robot camera such that the current and 
desired visual features match very closely. However, as the features 
detected by YOLO do not have any information about the real ori-
entation of the mouse, the yaw orientation of the robot’s end-effector 
does not change at all. As a result, the final orientation reached in this 
experiment is very different from the desired one (compare the desired 
pose in Fig.  4 with the final pose achieved by DVS in Fig.  9(b)). The 
IIL approach can achieve low orientation error as the underlying NODE 
has been trained to achieve the demonstrated orientation. However, 
it cannot compensate for the changes in the novel mouse positions 
outside the demonstrations, resulting in high visual error. This effect 
can also be qualitatively observed in Fig.  9(c). Our IL-DVS approach 
can adapt to novel positions of the mouse. At the same time, it utilizes 
the trained NODE to achieve the correct orientation as shown by the 
kinesthetic demonstrations. This enables IL-DVS to take advantage of 
both DVS and IL and achieve low visual and orientation errors, making 
it the best approach among the ones we evaluate. Fig.  9(d) shows that 
IL-DVS achieves a close fit to the desired visual features and the desired 
orientation.

6.2. Dropping an object in the cup

The second set of experiments aims to drive the robot end-effector 
on top of the cup and drop an object in it, leveraging the demonstra-
tions recorded with the cup. Note that these experiments present the 
additional challenge of performing nontrivial (e.g., nonlinear) trajecto-
ries. The camera’s initial and desired views are representative of two 
completely different camera–cup relative poses, as shown in Fig.  4.

The quantitative evaluation is presented in Fig.  8. The different 
approaches are again evaluated for one trained object position and 

https://youtu.be/b0lviYlXarI
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Fig. 10.  Dropping an object in the cup placed in a novel position: robot external view 
(left column) and the corresponding camera view (right column) as executed by DVS 
(a,b), IIL (c,d) and IL-DVS (e,f).

Fig. 11. Drop an object in the cup: the visual error with the trained object position 
(left) and two novel positions (center and right).

four novel object positions outside the demonstrations, as described 
in Section 5.5. DVS achieves a low visual error but fails to move the 
end-effector above the cup and orient it properly, resulting in high 
position and orientation errors. IIL achieves a low orientation error 
but cannot adapt to novel object positions leading to a high visual 
error. As expected, the visual error is much higher for the novel object 
positions; the orientation error remains low for both trained and novel 
object positions. IL-DVS, i.e., our approach, achieves low errors for both 
position and orientation (corresponding to limited visual errors) as it 
can adapt to novel object positions and orient the robot properly.

A qualitative evaluation is shown in Fig.  10 and confirms the quan-
titative results. The DVS approach can align the visual features to their 
desired counterpart (Fig.  10(b)), but the robot ends up in a completely 
wrong pose (Fig.  10(a)). As a result, it cannot drop the grasped object 
into the cup. IIL attempts to realize the complex trajectory required 
to execute the dropping task, but it has poor accuracy (Fig.  10(c)). 
8 
Table 1
Success rates for dropping an object into the cup.
 Approach Success rate [%]
 Train Novel Overall 
 DVS 0.00 0.00 0.00  
 IIL 83.33 0.00 16.67  
 IL-DVS 100.00 95.83 96.67  

In particular, for a novel object position, as the one shown in the 
figure, the robot is unable to adapt and drops the object outside the 
cup (Fig.  10(d)). IL-DVS (ours) shows the best performance among all 
the approaches, as it can cope with changing positions of the cup and 
drops the object successfully, as shown in Figs.  10(e) and 10(f).

Fig.  11 shows the time evolution of the visual error for the trained 
object position and two novel object positions during a complete ex-
periment (see Fig.  6 for a description of the trained and novel object 
positions). IL-DVS (ours) achieves a low visual error for both novel 
as well as trained object positions, whereas IIL achieves much higher 
visual errors for novel object positions due to its inability to adapt. As 
expected, the visual error made by DVS stays low throughout.

We also report the success rates of dropping the object into the cup 
for all methods (see Table  1). Each approach is evaluated 15 times 
as described in Section 5.5 (5 object positions for each of the 3 trials 
per object position) and we report mean values for success. A trial is 
considered 100% successful if the object drops cleanly into the cup, 
50% successful if the object hits the cup’s rim but eventually falls inside, 
and 0% otherwise. Table  1 shows that our IL-DVS approach achieves 
near-perfect results, while IIL achieves a much lower score since it 
is unsuccessful in dropping the object into the cup placed at novel 
positions; DVS is never able to drop the object into the cup and gets 
a score of 0.

6.3. Handling cluttered scenes

We execute the experiments presented in the previous section in 
a cluttered setting and qualitatively evaluate the effectiveness of our 
IL-DVS approach. The cup is placed on the table among several other 
objects, such as a book, a plate, a clamp, a spatula, and a game 
controller. In different trials, the location of the cup is varied among 
the other objects (see Fig.  12).

The pre-trained YOLO object detection model identifies multiple 
objects in the scene, as shown in Fig.  13 (left). As YOLO provides a 
list of detected object names and their corresponding visual features, 
we can easily select the object of interest (the cup, in our case) and use 
its visual features for VS, see Fig.  13 (right). Once the cup is selected as 
the desired object, the robot executes the required motion to position 
its gripper over the cup. Additionally, in a cluttered scene, YOLO offers 
us the flexibility of easily changing the target object to any other object 
detected in the scene.

With our IL-DVS approach, the robot successfully drops the object 
into the cup in a cluttered setting and also adapts its pose to the 
different locations of the cup, as shown in Fig.  12 (note that the 
locations of the cup and the corresponding final poses of the robot in 
these snapshots). Finally, Fig.  14 shows some views of the object being 
dropped into the cup placed in different cluttered scenes, as seen from 
the robot’s end-effector camera.

7. Conclusion

In this paper, we have presented Imitation Learning-based Direct 
Visual Servoing (IL-DVS), a dynamical system-based imitation learning 
approach for direct visual servoing. The proposed framework over-
comes several limitations of existing approaches. IL-DVS exploits off-
the-shelf deep learning-based perception to extract features from raw 
camera images, augmented with imitation learning layers that generate 
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Fig. 12. With IL-DVS, the robot successfully drops the object into the cup placed in different positions of a cluttered table.
Fig. 13. YOLO detects a cup robustly even in a cluttered scene  (left), providing the 
required visual features shown with green letters ‘C’ (right); the desired features are 
also shown, with blue letters ‘G’.  (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 14. Two final image frames captured by the robot camera showing that IL-DVS 
successfully drives the robot to drop the object into the cup in different cluttered 
environments.

complex robot trajectories. A key difference from end-to-end learning 
approaches is that IL-DVS exploits a control theoretical framework to 
ensure convergence to a given target. The approach has been exten-
sively evaluated with real robot experiments, and compared with two 
baselines showing superior performance.

CRediT authorship contribution statement

Sayantan Auddy: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Software, Methodology, Investigation, 
Data curation, Conceptualization. Antonio Paolillo: Writing – review 
& editing, Writing – original draft, Supervision, Project administra-
tion, Methodology, Investigation, Formal analysis, Conceptualization. 
Justus Piater: Supervision, Project administration. Matteo Saveri-
ano: Writing – review & editing, Writing – original draft, Supervision, 
Project administration, Methodology, Investigation, Formal analysis, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.
9 
Acknowledgments

Funded by the European Union projects INVERSE (grant agreement 
No. 101136067) and SERMAS (grant agreement No. 101070351), and 
by the Swiss State Secretariat for Education, Research and Innovation 
(SERI) under contract number 22.00247.

Sayantan Auddy was supported by a Doctoral Scholarship from the 
University of Innsbruck’s Support Programme for Young Researchers, 
awarded by the University of Innsbruck, Vice-Rectorate for Research.

Appendix A. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.robot.2025.104971.

Data availability

The link to our open source git repository containing our code and 
data has been shared in the paper.

References

[1] A. Grau, M. Indri, L.L. Bello, T. Sauter, Robots in industry: The past, present, 
and future of a growing collaboration with humans, IEEE Ind. Electron. Mag. 15 
(1) (2020) 50–61.

[2] M.M.O. Youngjoon Choi, S.S. Kim, Service robots in hotels: understanding the 
service quality perceptions of human-robot interaction, J. Hosp. Mark. Manag. 
29 (6) (2020) 613–635.

[3] C.S. González-González, V. Violant-Holz, R.M. Gil-Iranzo, Social robots in 
hospitals: a systematic review, Appl. Sci. 11 (13) (2021) 5976.

[4] B.D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learning 
from demonstration, Robot. Auton. Syst. 57 (5) (2009) 469–483.

[5] A. Billard, S. Calinon, R. Dillmann, S. Schaal, Robot programming by demonstra-
tion, in: B. Siciliano, O. Khatib (Eds.), Springer Handbook of Robotics, Springer, 
2008, pp. 1371–1394.

[6] S.M. Khansari-Zadeh, A. Billard, Learning stable non-linear dynamical systems 
with Gaussian mixture models, IEEE Trans. Robot. 27 (5) (2011) 943–957.

[7] S.M. Khansari-Zadeh, A. Billard, Learning control Lyapunov function to ensure 
stability of dynamical system-based robot reaching motions, Robot. Auton. Syst. 
62 (6) (2014) 752–765.

[8] N. Perrin, P. Schlehuber-Caissier, Fast diffeomorphic matching to learn globally 
asymptotically stable nonlinear dynamical systems, Systems Control Lett. 96 
(2016) 51–59.

[9] J. Urain, M. Ginesi, D. Tateo, J. Peters, ImitationFlow: Learning deep stable 
stochastic dynamic systems by normalizing flows, in: IEEE/RSJ International 
Conference on Intelligent Robots and Systems, 2020, pp. 5231–5237.

[10] F. Chaumette, S. Hutchinson, Visual servo control. Part I: Basic approaches, IEEE 
Robot. Autom. Mag. 13 (4) (2006) 82–90.

[11] F. Chaumette, S. Hutchinson, Visual servo control. Part II: Advanced approaches, 
IEEE Robot. Autom. Mag. 14 (1) (2007) 109–118.

[12] A. Paolillo, M. Saveriano, Learning stable dynamical systems for visual servoing, 
in: IEEE International Conference on Robotics and Automation, 2022, pp. 
8636–8642.

[13] A. Paolillo, P. Robuffo Giordano, M. Saveriano, Dynamical system-based imita-
tion learning for visual servoing using the large projection formulation, in: IEEE 
International Conference on Robotics and Automation, 2023, pp. 755–761.

https://doi.org/10.1016/j.robot.2025.104971
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb1
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb1
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb1
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb1
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb1
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb2
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb2
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb2
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb2
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb2
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb3
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb3
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb3
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb4
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb4
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb4
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb5
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb5
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb5
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb5
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb5
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb6
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb6
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb6
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb7
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb7
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb7
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb7
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb7
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb8
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb8
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb8
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb8
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb8
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb9
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb9
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb9
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb9
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb9
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb10
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb10
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb10
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb11
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb11
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb11
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb12
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb12
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb12
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb12
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb12
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb13
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb13
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb13
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb13
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb13


S. Auddy et al. Robotics and Autonomous Systems 190 (2025) 104971 
[14] R. Felici, M. Saveriano, L. Roveda, A. Paolillo, Imitation learning-based visual ser-
voing for tracking moving objects, in: International Workshop on Human-Friendly 
Robotics, Springer, 2023, pp. 110–122.

[15] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G.V. Hernandez, L. 
Krpalkova, D. Riordan, J. Walsh, Deep learning vs. traditional computer vision, 
in: Computer Vision Conference, 2020, pp. 128–144.

[16] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[17] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, 

real-time object detection, in: IEEE Conf. on Computer Vision and Pattern 
Recognition, 2016, pp. 779–788.

[18] P. Jiang, D. Ergu, F. Liu, Y. Cai, B. Ma, A review of Yolo algorithm developments, 
Procedia Comput. Sci. 199 (2022) 1066–1073.

[19] P. Sahoo, P. Meharia, A. Ghosh, S. Saha, V. Jain, A. Chadha, Unveiling hallu-
cination in text, image, video, and audio foundation models: A comprehensive 
survey, 2024, arXiv:2405.09589.

[20] Y. Li, G. Wang, X. Ji, Y. Xiang, D. Fox, Deepim: Deep iterative matching for 
6D pose estimation, in: European Conference on Computer Vision, 2018, pp. 
683–698.

[21] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, D. Fox, Self-supervised 6D 
object pose estimation for robot manipulation, in: IEEE International Conference 
on Robotics and Automation, 2020, pp. 3665–3671.

[22] M. Nava, A. Paolillo, J. Guzzi, L.M. Gambardella, A. Giusti, Uncertainty-aware 
self-supervised learning of spatial perception tasks, IEEE Robot. Autom. Lett. 6 
(4) (2021) 6693–6700.

[23] M. Nava, A. Paolillo, J. Guzzi, L.M. Gambardella, A. Giusti, Learning visual 
localization of a quadrotor using its noise as self-supervision, IEEE Robot. Autom. 
Lett. 7 (2) (2022) 2218–2225.

[24] A. Saxena, H. Pandya, G. Kumar, A. Gaud, K.M. Krishna, Exploring convolutional 
networks for end-to-end visual servoing, in: IEEE International Conference on 
Robotics and Automation, 2017, pp. 3817–3823.

[25] C. Yu, Z. Cai, H. Pham, Q.-C. Pham, Siamese convolutional neural network for 
sub-millimeter-accurate camera pose estimation and visual servoing, in: IEEE/RSJ 
International Conference on Intelligent Robots and Systems, 2019, pp. 935–941.

[26] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, P. Corke, Training deep neural 
networks for visual servoing, in: IEEE International Conference on Robotics and 
Automation, 2018, pp. 3307–3314.

[27] P. Durdevic, D. Ortiz-Arroyo, A deep neural network sensor for visual servoing 
in 3d spaces, Sensors 20 (5) (2020) 1437.

[28] P. Vitiello, K. Dreczkowski, E. Johns, One-shot imitation learning: A pose 
estimation perspective, in: Conference on Robot Learning, 2023, pp. 943–970.

[29] S. Felton, E. Fromont, E. Marchand, Siame-se(3): regression in se(3) for end-
to-end visual servoing, in: IEEE International Conference on Robotics and 
Automation, 2021, pp. 14454–14460.

[30] E.Y. Puang, K. Peng Tee, W. Jing, KOVIS: Keypoint-based visual servoing 
with zero-shot sim-to-real transfer for robotics manipulation, in: IEEE/RSJ 
International Conference on Intelligent Robots and Systems, 2020, pp. 
7527–7533.

[31] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep visuomotor 
policies, J. Mach. Learn. Res. 17 (1) (2016) 1334–1373.

[32] E. Johns, Coarse-to-fine imitation learning: Robot manipulation from a single 
demonstration, in: IEEE International Conference on Robotics and Automation, 
2021, pp. 4613–4619.

[33] M. Bakthavatchalam, O. Tahri, F. Chaumette, A direct dense visual servo-
ing approach using photometric moments, IEEE Trans. Robot. 34 (5) (2018) 
1226–1239.

[34] C. Collewet, E. Marchand, Photometric visual servoing, IEEE Trans. Robot. 27 
(4) (2011) 828–834.

[35] Q. Bateux, E. Marchand, Histograms-based visual servoing, IEEE Robot. Autom. 
Lett. 2 (1) (2017) 80–87.

[36] N. Crombez, E.M. Mouaddib, G. Caron, F. Chaumette, Visual servoing with 
photometric Gaussian mixtures as dense features, IEEE Trans. Robot. 35 (1) 
(2019) 49–63.

[37] A. Paolillo, M. Nava, D. Piga, A. Giusti, Visual servoing with geometrically inter-
pretable neural perception, in: IEEE/RSJ International Conference on Intelligent 
Robots and Systems, 2022, pp. 5300–5306.

[38] S. Felton, P. Brault, E. Fromont, E. Marchand, Visual servoing in autoencoder 
latent space, IEEE Robot. Autom. Lett. 7 (2) (2022) 3234–3241.

[39] H. Liu, D. Li, B. Jiang, J. Zhou, T. Wei, X. Yao, MGBM-YOLO: a faster light-
weight object detection model for robotic grasping of bolster spring based on 
image-based visual servoing, J. Intell. Robot. Syst. 104 (4) (2022) 77.

[40] J. Luo, L. Zhu, L. Li, P. Hong, Robot visual servoing grasping based on top-down 
keypoint detection network, IEEE Trans. Instrum. Meas. 73 (2024) 1–11.

[41] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, planning and 
control, Springer, 2009.

[42] M. Marey, F. Chaumette, A new large projection operator for the redundancy 
framework, in: IEEE International Conference on Robotics and Automation, 2010, 
pp. 3727–3732.

[43] G. Jocher, A. Chaurasia, J. Qiu, Ultralytics YOLO, 2023, URL https://github.
com/ultralytics/ultralytics.
10 
[44] A. Ude, B. Nemec, T. Petrić, J. Morimoto, Orientation in cartesian space dynamic 
movement primitives, in: 2014 IEEE International Conference on Robotics and 
Automation, ICRA, IEEE, 2014, pp. 2997–3004.

[45] R.T. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differen-
tial equations, in: Proceedings of the 32nd International Conference on Neural 
Information Processing Systems, 2018, pp. 6572–6583.

[46] S. Auddy, J. Hollenstein, M. Saveriano, A. Rodríguez-Sánchez, J. Piater, Continual 
learning from demonstration of robotics skills, Robot. Auton. Syst. 165 (2023) 
104427.

[47] S. Auddy, J. Hollenstein, M. Saveriano, A. Rodríguez-Sánchez, J. Piater, Scalable 
and efficient continual learning from demonstration via hypernetwork-generated 
stable dynamics model, 2024, arXiv preprint arXiv:2311.03600.

[48] J. Urain, M. Ginesi, D. Tateo, J. Peters, Imitationflow: Learning deep stable 
stochastic dynamic systems by normalizing flows, in: 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS, IEEE, 2020, pp. 
5231–5237.

[49] Y. Huang, F.J. Abu-Dakka, J. Silvério, D.G. Caldwell, Toward orientation learning 
and adaptation in cartesian space, IEEE Trans. Robot. 37 (1) (2020) 82–98.

[50] M. Saveriano, F. Franzel, D. Lee, Merging position and orientation motion 
primitives, in: 2019 International Conference on Robotics and Automation, ICRA, 
IEEE, 2019, pp. 7041–7047.

[51] W. Wang, M. Saveriano, F.J. Abu-Dakka, Learning deep robotic skills on 
Riemannian manifolds, IEEE Access 10 (2022) 114143–114152.

[52] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. 
Zitnick, Microsoft COCO: Common objects in context, in: European Conference 
Computer Vision, Springer, 2014, pp. 740–755.

Sayantan Auddy is a researcher in the Learning and In-
telligent Systems lab at the Technical University of Berlin 
(Germany). He received his PhD degree from the University 
of Innsbruck (Austria) in 2025. He received his M.Sc. 
degree in Intelligent Adaptive Systems from the University 
of Hamburg (Germany) in 2018, and his B.Tech. degree in 
Computer Science and Engineering from Haldia Institute of 
Technology (India) in 2009. His research interests include 
continual learning for robotics, reinforcement learning, and 
deep learning.

Antonio Paolillo is a Researcher at the Dalle Molle Institute 
for Artificial Intelligence (IDSIA, USI-SUPSI) in Lugano. He 
received his Ph.D. and M.Sc. from Sapienza University of 
Rome, Italy, in 2015 and 2011, respectively. He was a post-
doc at CNRS-University of Montpellier, France (2015–17); 
Idiap Research Institute, Martigny, Switzerland (2018–19); 
EPFL, Lausanne, Switzerland (2019–20). He visited Örebro 
University, Sweden (2010); CNRS-University of Montpellier, 
France (2014); and CNRS-AIST Joint Robotics Laboratory, 
Tsukuba, Japan (2015). He is an Associate Editor for RA-
L. His research interests include robotic control, machine 
learning and AI for robotics, human–robot interaction, and 
rehabilitation robotics.

Justus Piater is a professor of computer science at the Uni-
versity of Innsbruck, Austria, where he leads the Intelligent 
and Interactive Systems group and serves as the founding 
director of the interdisciplinary Digital Science Center. He 
earned his Ph.D. degree at the University of Massachusetts 
Amherst, USA, and was a professor of computer science at 
the University of Liège, Belgium, and a visiting researcher 
at the Max Planck Institute for Biological Cybernetics in 
Tübingen, Germany. His research interests focus on learning 
and inference in sensorimotor systems. He has published 
more than 200 papers, several of which have received 
best-paper awards.

Matteo Saveriano received his B.Sc. and M.Sc. degree in 
automatic control engineering from University of Naples, 
Italy, in 2008 and 2011, respectively. He received his Ph.D. 
from the Technical University of Munich in 2017. Currently, 
he is an assistant professor at the Department of Industrial 
Engineering (DII), University of Trento, Italy. Previously, he 
was an assistant professor at the University of Innsbruck and 
a postdoctoral researcher at the German Aerospace Center 
(DLR). He is an Associate Editor for RA-L. His research ac-
tivities include robot learning, human–robot interaction, and 
understanding and interpreting human activities. Webpage: 
https://matteosaveriano.weebly.com/

http://refhub.elsevier.com/S0921-8890(25)00057-0/sb14
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb14
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb14
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb14
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb14
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb15
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb15
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb15
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb15
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb15
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb16
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb17
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb17
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb17
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb17
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb17
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb18
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb18
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb18
http://arxiv.org/abs/2405.09589
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb20
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb20
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb20
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb20
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb20
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb21
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb21
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb21
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb21
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb21
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb22
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb22
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb22
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb22
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb22
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb23
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb23
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb23
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb23
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb23
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb24
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb24
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb24
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb24
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb24
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb25
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb25
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb25
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb25
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb25
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb26
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb26
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb26
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb26
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb26
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb27
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb27
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb27
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb28
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb28
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb28
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb29
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb29
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb29
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb29
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb29
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb30
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb30
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb30
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb30
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb30
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb30
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb30
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb31
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb31
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb31
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb32
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb32
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb32
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb32
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb32
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb33
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb33
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb33
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb33
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb33
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb34
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb34
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb34
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb35
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb35
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb35
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb36
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb36
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb36
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb36
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb36
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb37
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb37
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb37
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb37
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb37
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb38
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb38
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb38
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb39
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb39
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb39
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb39
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb39
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb40
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb40
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb40
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb41
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb41
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb41
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb42
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb42
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb42
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb42
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb42
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb44
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb44
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb44
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb44
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb44
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb45
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb45
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb45
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb45
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb45
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb46
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb46
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb46
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb46
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb46
http://arxiv.org/abs/2311.03600
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb48
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb48
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb48
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb48
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb48
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb48
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb48
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb49
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb49
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb49
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb50
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb50
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb50
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb50
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb50
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb51
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb51
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb51
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb52
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb52
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb52
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb52
http://refhub.elsevier.com/S0921-8890(25)00057-0/sb52
https://matteosaveriano.weebly.com/

	Imitation learning-based Direct Visual Servoing using the large projection formulation
	Introduction
	Related work
	Background
	Approach
	DL-based detection and its limits
	Overcoming the detection limits through imitation
	Merging DL and IL with the large projector

	Experimental setup
	Hardware and software components
	YOLO detector 
	Collection of demonstrations
	NODE training
	Evaluation protocol

	Experimental results
	Centering the mouse in the image
	Dropping an object in the cup
	Handling cluttered scenes

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	Data availability
	References


