
Gaussian path model library for intuitive robot
motion programming by demonstration

Samuli Soutukorva1, Markku Suomalainen1, Martin Kollingbaum2 and Tapio Heikkilä1

Abstract—This paper presents a system for generating Gaus-
sian path models from teaching data representing the path shape.
In addition, methods for using these path models to classify
human demonstrations of paths are introduced. By generating
a library of multiple Gaussian path models of various shapes,
human demonstrations can be used for intuitive robot motion
programming. A method for modifying existing Gaussian path
models by demonstration through geometric analysis is also
presented.

Index Terms—Learning and Adaptive Systems, Machine learn-
ing, Intelligent and Flexible Manufacturing

I. INTRODUCTION

Programming by Demonstration (PbD) is one of the com-
monly proposed solutions for intuitive robot programming,
where a user shows the desired trajectory, or skill, to a robot
[1]. PbD, thus, has the potential to enable domain experts with
limited expertise in robotics to teach a robot what actions to
perform, purely through demonstrations, allowing a wider use
of robotics across multiple industries. In general, a multitude
of demonstrations is required to provide the amount of data
for robotic systems to properly learn a demonstrated trajectory.
Domain experts, however, may prefer robotic systems where
one demonstration is sufficient for the robot to deploy a
suitable skill that properly imitates the demonstrated trajectory.

In this paper, an approach for programming robot paths with
a single demonstration is presented that utilises pre-trained
models of prototypical movements a robot may perform (Gaus-
sian path models) and methods of adapting and parameterising
such models according to a single demonstration by a domain
expert, in order to generate the required robot skill. Gaus-
sian path models are general-purpose prototypical movements
(such as, for example, half-circle and other path segments, see
Fig. 3) and are generated themselves in a pre-training step,
where the training data is derived from either demonstrations
or synthetically produced. A library of these path models can
then be used in a programming-by-demonstration effort, where
a single demonstration provided by a domain expert is used
to retrieve the best-fit path model from such a library and
parameterize this model with respect to the demonstration.

The contribution of this paper is a set of algorithms for
building such a library of Gaussian path models, as well as
for matching demonstrations to path models and adapting them
for a specific programming purpose. It is also shown how path
models can be efficiently modified by a domain expert to create

1 VTT Technical Research Centre of Finland Ltd, Oulu, Finland
firstname.lastname@vtt.fi

2 mjkollingbaum@hotmail.com

the required path data for programming a robot, without the
need to train a new path model.

II. RELATED WORK AND BACKGROUND

There is a wide variety of ways to extract suitable data
from human demonstrations to generate a condensed repre-
sentation that attempts to capture the demonstrated path, or
trajectory. Splines are widely used in robotics in general, as
well as in PbD [2]. Lately, different kinds of Gaussian-based
models have proven popular; a good overview with examples
is provided in [3]. Of the presented models, for example,
Hidden Markov Models (HMM) [4] and Gaussian mixture
model-Gaussian Mixture Regression (GMM-GMR) have been
used for motion captured data [5]. Even Dynamic Movement
Primitives (DMP) have been created from GMM [6]. Further
Gaussian models are, for example, Infinite Gaussian Mixture
Models (IGMM) [7]. Several proposals exist to generate li-
braries such as in this paper. In [8], a dynamic movement prim-
itive (DMP) library is used to segment trajectories consisting
of sequences of movement primitives. Methods for segmenting
human demonstrations into movement primitives and compiled
to movement primitive libraries have been proposed [9], [10].
Position and force-torque data from human demonstrations
have been utilized to recognize predefined skills from a skill
library [11], [12]. A common theme to all the mentioned
Gaussian-based methods is that a suitable number of keypoints
characterizing a path is required to preserve the shape of the
movement. However, details regarding the identification of
keypoints is often neglected in these papers. For time-variant
demonstrations, methods such as Non-Maximum Suppression
algorithm (NMS) has been proposed [13]. In contrast, the
proposed method uses a Gaussian Hidden Markov Model
(GHMM) based approach, and presents practical methods for
managing the number of keypoints. Moreover, we present a
way for on-the-fly modifications, a method proposed before,
however, with different representations and without focusing
on the keypoints [2], [14].

III. METHODS

In the approach presented in this paper, a Gaussian path
model is created from multiple teaching data sets of path data.
These teaching data sets are first brought into a canonicalized
form (III-A) and then reduced to an approximation of the
original demonstration (III-B) as sequences of path keypoints.
With this data, a Gaussian model of the path is created from
the means and covariances of the path keypoints (III-C). Such
a Gaussian model can then be used to classify demonstrations

ar
X

iv
:2

50
9.

10
00

7v
2 

 [
cs

.R
O

] 
 1

5 
Se

p 
20

25

https://arxiv.org/abs/2509.10007v2


(III-D) and utilized in intuitive robot programming. This
approach shares similarities with the construction of GHMM,
however, it is limited to linear sequences only.

A. Canonicalization

In order for a path model to become flexibly utilizable for
arbitrary path recognition and robot programming, the path
model must be agnostic with regards to scale, position, and the
orientation of the path data. This is achieved through storing
the path model in a canonicalized form of the path, where
the only feature conserved from the teaching data is the shape
of the path (Algorithm 1). The canonicalization of the path
heavily relies on Principal Component Analysis (PCA). The
rotation matrix for re-orienting the path is defined by the eigen-
vectors of the sample sets of sample data points (Algorithm 1,
line 2). To ensure a right-hand coordinate system defined by
the eigenvectors, the rotation matrix is checked and adjusted
by changing the sign of the third eigenvector (i.e., the Z-axis),
if needed. First, the path point data is centralized around the
mean of the data set (line 1 in Algorithm 1). Second, the path
points are scaled (= normalized) by the standard deviations
of the data set as the square roots of the eigenvalues of the
data (line 10 in Algorithm 1). The normalized scale is then
defined as the inverse of the square root of the dot product of
the square roots of the eigenvalues. This equals to the sum of
the vectors defined by the eigenvalues. After the centralization
and scaling, the data is rotated with the rotation matrix.

Algorithm 1 Canonicalization of 3-D path
Input: n data sets of 3-D points
Output: Canonicalized 3-D points

1: Centralize data
2: Rotation matrix ← PCA(centralized data).eigenvectors
3: if left handed coordinate frame then
4: z-axis = -z-axis ▷ Left-handed → right-handed
5: end if
6: for each set in data sets do
7: Centralize the set
8: Calculate eigenvalues of the set
9: σx, σy, σz =

√
eigenvalues

10: scale = 1√
[σx,σy,σz ]·[σx,σy,σz ]

11: Scale the centralized set
12: Rotate the set (line 2)
13: end for
14: Return canonicalized 3-D points

B. Decimation algorithms

As the teaching data for a path can consist of a large
amount of points, the path data is decimated to find the set of
keypoints as the least amount of data that is still representative
of the demonstrated path. This approximation allows the path
recognition to be done on a limited number of keypoints while
conserving the shape of the path. The approximation of the
canonicalized path is generated by two polyline decimation
algorithms. The Ramer–Douglas–Peucker algorithm (RDP)

[15] [16] removes points by finding the point furthest from
a generated line segment and comparing that distance to a
given tolerance parameter. If the tolerance is exceeded, the
point is kept and the process is repeated recursively. The
Visvalingam–Whyatt algorithm (VW) [17] removes points by
generating triangles formed by adjacent points, finding the
smallest triangle and comparing its area to a given tolerance
parameter. If the tolerance is exceeded, the point is kept and
the process is repeated.

These decimation algorithms are used in sequence before
generating a Gaussian model of a path from multiple sets of
teaching data: RDP is used to find an appropriate level of dec-
imation (i.e., the number of keypoints) for each generated path
model. VW is then utilized to decimate the teaching data sets
so that each of them contains an identical number of keypoints.
This simplifies the generation of the Gaussian path model as
the teaching data sets have the same number of keypoints, and
also enables correct matching in path recognition.

C. Generating Gaussian path models

Fig. 1 presents an example of creating a Gaussian path
model from collected teaching data. From multiple sets of
teaching data representing the same path (Fig. 1a), a Gaussian
model of the path is generated (Algorithm 2). First, the
teaching data is canonicalized (Algorithm 1) and filtered with
a Gaussian filter (Algorithm 2, line 2). Keypoints for the path
model (Fig. 1b) are then retrieved from the teaching data with
the RDP and VW decimation algorithms (Algorithm 2, line
3). Mean values and covariances of the path keypoints are
calculated from the path keypoints (Algorithm 2, lines 5-7).
These mean values and covariances are then used to generate
a Gaussian model of the path (Fig. 1c).

For the Gaussian model to be representative of the original
path and exploitable in path recognition, the teaching data has
to meet some basic requirements. There has to be sufficient
variability in the teaching data to create a path model that
can be used in path recognition. With too little variability in
the teaching path data, the paths cannot be classified as path
models, as the path recognition relies on the covariances of
the detected keypoints.

The teaching data has to be constructed of more than four
separate sets of path points in order to produce variability in all
three dimensions for each path model keypoint. For 3-D points,
the covariance matrix associated with each keypoint has the
rank of three if the number of sample sets is four or more. With
only three sets of teaching data, each covariance associated
with a Gaussian path model’s keypoint would have the rank
two. This would reduce the covariance matrix to conform to a
plane (and with just two sets of teaching data, the covariance
matrix would conform to a line).

As the Gaussian path model is approximated from the
original path (III-B), a suitable level of decimation has to be
defined. The performance of a Gaussian path model in path
recognition varies as the level of decimation is changed. For
example, with high enough decimation (i.e., very low keypoint
count) the scores obtained in path recognition do not get very



(a) Canonicalized teaching data of the path. (b) Keypoints from teaching data. (c) Gaussian model of the path.

Fig. 1: The sequence of creating a Gaussian path model from teaching data.

Algorithm 2 Create a Gaussian model from training data
Input: 3-D path points
Output: Gaussian 3-D path model

1: Canonicalized 3-D path ← Canonicalize(3-D path points)
▷ Algorithm 1

2: Apply Gaussian filter to the canonicalized path data
3: Keypoint count ← RDP(path data, epsilon)
4: Path keypoint sets ← VW(path data, keypoint count)
5: for keypoint in path keypoint sets do
6: Calculate the means for each keypoint:

meani ← Mean(keypoint set1[keypointi],
keypoint set2[keypointi],
...,
keypoint setn−1[keypointi],
keypoint setn[keypointi])

7: Calculate the covariance for each keypoint:
covi ← Covariance(keypoint set1[keypointi],

keypoint set2[keypointi],
...,
keypoint setn−1[keypointi],
keypoint setn[keypointi])

8: end for
9: Gaussian model of the path ← Mean values of keypoints,

covariances of keypoints
10: Return Gaussian model of the path

low with incorrect path models (as the path specific score is
the sum of keypoint specific scores). This raises the possibility
of an incorrect recognition.

D. Path recognition

The generated Gaussian path models can be utilized in
recognizing paths demonstrated by a human and further used
as paths for robot motion programming. Algorithm 3 outlines
the procedure of recognizing a demonstrated path as a stored
Gaussian path model. First, the demonstration of the path is
canonicalized (Algorithm 1) and the canonicalized path data
is then filtered with a Gaussian filter (Algorithm 3, line 2).

The canonicalized and filtered path demonstration is approx-
imated with the VW decimation algorithm, using the candidate
model’s parameter for the number of keypoints (Algorithm 3,
lines 4-5). This ensures that the decimated and canonicalized
data of the demonstration has the same number of keypoints as
the Gaussian model it is being compared to. The canonicalized
path demonstration can now be compared to existing Gaussian
path models (i.e., candidate models). In line 6 of Algorithm
3, the score for each keypoint in the demonstration is defined
by calculating the loglikelihood (L) for that keypoint (x),
the corresponding keypoint of the candidate model (µ), its
covariance matrix (

∑
) and the rank of the covariance matrix

(k) (in our case k equals to 3):

L = log
exp(− 1

2 (x− µ)T
∑−1

(x− µ))√
(2π)k det

∑ (1)

These keypoint-specific scores are summed up to get the
overall score for the path (Algorithm 3, line 8). By comparing
the scores of multiple Gaussian path models, the best matching
path model can be found for the demonstrated path.

E. Exploitation of Gaussian models and path recognition

Once a demonstrated path is recognized through a specific
path model, the keypoints of the matching Gaussian path
model can be decanonicalized with Algorithm 4. Here, the



Algorithm 3 Path recognition
Input: Single demonstration of a 3-D path
Output: Result Gaussian model

1: Canonical demonstration ← Canonicalize(demonstration
data set) ▷ Algorithm 1

2: Apply Gaussian filter to the canonicalized data set
3: for each candidate model in model library do
4: Keypoint count ← Candidate model’s keypoint count
5: Demonstration keypoints ← VW(demonstration

data set, keypoint count)
6: for each keypoint in demonstration keypoints do

Keypoint score ← loglikelihood(demonstration keypoint,
candidate model keypoint mean, candidate model keypoint
covariance) ▷ (1)

7: end for
8: Model score =

∑n
i=1 keypoint scorei

9: end for
10: Best model score → result model
11: Return result Gaussian model

once canonicalized path model is scaled, transformed, and
rotated to the configuration set by the demonstration data. This
allows the Gaussian path model’s keypoint means to be utilized
in robot motion programming, fitted to the demonstration’s
scale, orientation, and position. Here, the demonstration of
the path can be thought of as a localization action for the
path keypoints that are fetched from the Gaussian path model
through the path recognition procedure.

Algorithm 4 Decanonicalization of 3-D path
Input: Canonicalized 3-D path, reference scale, reference

rotation, reference translation
Output: Decanonicalized 3-D path

1: for each point in path do
2: Revert orientation
3: Revert scale
4: Revert centralization
5: end for
6: Return decanonicalized path

From multiple Gaussian path models, a path model library,
consisting of a variety of paths, can be created and utilized in
path recognition, and, furthermore, in robot motion program-
ming by demonstration. In addition to different path shapes,
variations of the same path can be generated from the same
teaching data to bring versatility to the library. For example,
the direction of the path in the model can be reversed allowing
the demonstration to be in either direction along the path. More
critically, also flipped path models have to be created. As the
direction of the eigenvectors (Algorithm 1, line 2) can be one
of two, and which cannot be predicted, the orientation of the
path can also vary in two different variations per eigenvector.
For the path recognition (Algorithm 3) to work robustly,
flipped variations for the Gaussian path model are generated
for the library. Flipped variations have the rotation matrix

of the canonicalized path model, but rotated 180° around a
coordinate axis.

F. Correcting Gaussian path models

As through the decimation step, the created Gaussian path
models are based on a very limited number of keypoints, they
can be adjusted with relative ease by manipulating the keypoint
sequence of the Gaussian path model. In a case, where a path
has been demonstrated and recognized to be best represented
by a particular Gaussian path model (i.e., the Gaussian path
model’s keypoints are close to those of a demonstration), the
path model’s keypoints can be revised by demonstration with
a geometric analysis of the demonstrated correction keypoints
and the Gaussian path model’s keypoints (Algorithm 5). This
geometric analysis finds the redundant keypoints from the path
model and inserts the correction keypoints to replace them,
forming a new path keypoint sequence. This allows for the
creation of a new path utilizing the Gaussian path model’s
keypoints and the revised (or correction) keypoints without
having to generate a new path model.

Fig. 2 displays the sequence of the path correction. First, a
path must be demonstrated and recognized, and a correction
to this path must be demonstrated and approximated as key-
points with RDP (Fig. 2a). After this, a geometric analysis is
performed based on the first and last correction keypoints and
their closest keypoints of the path model (these are indicated
with orange arrows in Fig. 2b). A line segment is generated
from these closest keypoints to the following model keypoints
(cyan dotted line in Fig. 2b) and the correction keypoint
is projected onto that line segment (blue line in Fig. 2b).
The redundant keypoints (plotted with red crosses in Fig.
2b) are deduced from whether the projection casts onto the
line segment. After this, the redundant keypoints are deleted
from the path model and the correction keypoints are inserted,
producing a new path (dashed blue line in Fig. 2c). Algorithm
5 displays further details of this geometrical analysis.

IV. RESULTS

A. Generation of the path library

A path model library was constructed for path recognition
tests consisting of ten path models. Five of the path models
were generic geometric shapes (Fig. 3: parabola, rectangle,
quarter-circle, spiral, and half-circle) whose path data was
synthetic and generated with software. For each of these
synthetic paths, the path data consisted of eight to ten teaching
sets. Noise was introduced to the data by adding a normally
distributed random variable with a mean of 0 to each path
point in the data.

The other five path models were taught by human demon-
stration on a test object using a tracking tool [18] (Fig. 4). The
shapes of these paths (Fig. 3: test paths 1-5) were arbitrarily
selected by choosing sections from edges of the test object
and marking them as paths. The tracking tool was used to
demonstrate these paths and teaching data was collected during
the demonstration. Four to five teaching sets were tracked for
each of these paths. Due to the small number of teaching



(a) Path model keypoints (black) and cor-
rection keypoints (red).

(b) Geometric analysis of path correction. (c) Corrected path (blue).

Fig. 2: The sequence of the path correction.

Fig. 3: The keypoints of the Gaussian path models in the path recognition library.

sets, some noise was added to teaching data with a normally
distributed random variable. The necessity of having enough
variance in the teaching data to create a robust Gaussian model
of the path is discussed further in section V-A. Gaussian path

Fig. 4: Test object and tracking tool (NDI Polaris Vega XT)
used for path model teaching and path demonstrations.

models were generated from the teaching data with Algorithm
2. A suitable level of decimation for the path shapes was found
through iteration: the level of decimation was incremented
while tracking the score for a correct recognition and the best
score of the incorrect path models. By maximizing the dif-
ference between these two scores, the level of decimation for
each path was found. In addition to maximizing the difference

of correct and best incorrect scores, it should be considered
that a lower level of decimation provides a geometrically
more accurate representation of the original path as it is less
approximated. This iterative method for finding the level of
decimation is discussed further in section V-B.

B. Path demonstrations

Demonstrations corresponding to all of the generated path
models in the library consisted of one set of path points.
Demonstration data of the five simple geometric shapes was
generated with software, much like the teaching data for these
paths. Demonstration data of the paths on the test object was
collected with human demonstration using the same tracking
tool the teaching data was collected with. The test object’s
pose was different during the collection of path teaching data
and during the tracking of the path demonstrations to assess
the performance of the path canonicalization. No noise was
added to the demonstration data of the paths.

C. Path recognition

The path recognition algorithm (Algorithm 3) was executed
with the demonstration data and the taught path models. Fig. 5
presents one of the paths demonstrated on the test object in its
canonicalized form (plotted in blue), alongside the Gaussian
path model from the library it was classified as (plotted in
black). The gray ellipsoid shapes represent the covariances of
the Gaussian path model’s keypoints.

Fig. 6 displays a comparative analysis of the path recog-
nition algorithm’s performance with the selected paths. Each



Algorithm 5 Correct a path model’s keypoints
Input: Correction path points, Gaussian path model
Output: Adjusted 3-D path model

1: Correction keypoints ← RDP(Correction path points)
2: Find the closest path model keypoint to the first correction

keypoint
3: if closest point is the first point of path model then
4: Next keypoint → first redundant keypoint
5: else if closest point is the last point of path model then
6: Previous keypoint → first redundant keypoint
7: else
8: Draw line segment between the closest point and the

following path model keypoint
9: Project first correction keypoint onto line segment

10: if projection is between closest points then
11: Next keypoint → first redundant keypoint
12: else
13: Closest keypoint → first redundant keypoint
14: end if
15: end if
16: Find the closest path model keypoint to the last correction

keypoint
17: if closest point is the first point of path model then
18: Next keypoint → last redundant keypoint
19: else if closest point is the last point of path model then
20: Previous keypoint → last redundant keypoint
21: else
22: Draw line segment between the closest point and the

following path model keypoint
23: Project first correction keypoint onto line segment
24: if projection is between closest points then
25: Closest keypoint → last redundant keypoint
26: else
27: Previous keypoint → last redundant keypoint
28: end if
29: end if
30: Redundant keypoints← range(first redundant keypoint:last

redundant keypoint)
31: Replace the redundant keypoints with the correction key-

points in path model’s keypoints
32: return corrected keypoints

column represents a demonstrated path and each row a path
model in the path recognition library. A green-yellow-red color
coding signifies the score values for each path classification
from good to worse. The best score for each demonstrated
path is highlighted in bold. The robustness of the presented
path recognition algorithm is emphasized by Fig. 6 as no false
classifications were made.

D. Path correction

Three paths (test paths 1-3 in Fig. 3) were demonstrated
on the test object (Fig. 7) along with corrections to the paths.
These paths were classified with the path recognition algorithm
(Algorithm 3) and the keypoints of the best-fit model were

Fig. 5: A demonstrated path (plotted in blue) recognized as a
Gaussian path model from the path recognition library (plotted
in black).

corrected with the path correction algorithm (Algorithm 5).
The path model keypoints, the path correction keypoints and
the corrected path are displayed in Fig. 2 for test path 1, Fig.
8 for test path 2, and in Fig. 9 for test path 3.

V. DISCUSSION

A. Role of the quality and quantity of teaching data

The method for path recognition requires only a small
amount teaching data — as few as four demonstrations were
sufficient for generating a Gaussian path model that was
utilizable in path classification. However, for successful path
recognition with the generated models, noise was added to the
teaching data due to the small amount of teaching data. More
testing is needed, with larger teaching sets per path, in order
to see if more teaching data can substitute the need for adding
noise to the data. Additionally, a process for investigating and
deriving a sufficient level of noise in the teaching data to create
a robust Gaussian path model is a matter for further research.
For the current tests, a suitable amplitude for the added noise
for generating the Gaussian model was found by iteration.
However, a systematic method for defining the suitable level of
noise in teaching data is necessary for utilizing these methods
outside testing and development purposes.

B. Path model decimation

The level of decimation for the path models was found
through iteration in the tests by executing the path recognition
algorithm while varying the tolerance value of the decimation
algorithms and tracking the scores of the correct match and the
best-scoring incorrect match (IV-A). The difference of these
scores was maximized. Fig. 10 displays examples of the path
recognition score’s behaviour as the tolerance value of the
RDP decimation algorithm is varied. As the tolerance value is
increased, the amount of keypoints in the model is reduced,
increasing the score for incorrect recognitions. The selected
tolerance value for the decimation is highlighted with a dashed
line, where the difference between the correct recognition
score and the best score for an incorrect recognition is at its



Fig. 6: The path recognition algorithm’s performance with the selected paths.

Fig. 7: Approximate positions of test path 1 (red), test path 2
(green), and test path 3 (blue) and their respective corrections
(dotted lines) on the test object.

(a) Path model keypoints (black)
and correction keypoints (red).

(b) Corrected path’s
keypoints.

Fig. 8: An example of path correction for test path 2.

largest. It is important to note that this method for finding a
suitable level of decimation requires manual work along with
the knowledge of a correct match from the path recognition
library to the path being demonstrated. Systematic methods
for finding the suitable level and decimation for teaching
data could be developed. Research on methods that utilized
parameters derived from the path’s shape (such as path length,
angular changes and rate of angular changes) to deduce a
tolerance parameter for the decimation algorithms is a possible
extension to the work introduced in this paper.

C. Path modification

The presented path modification algorithm has a limitation
in that the demonstrated correction has to be in the same

(a) Path model keypoints
(black) and correction
keypoints (red).

(b) Corrected path’s
keypoints.

Fig. 9: An example of path correction for test path 3.

(a) Test path 3. (b) Test path 5.

Fig. 10: The path recognition scores of the correct recognition
(green) and the best incorrect recognition (red) as a function of
RDP algorithm’s tolerance value. The selected RDP tolerance
is highlighted with a dashed line.

coordinate frame as the demonstrated path. However, this
method allows for utilizing the path library’s models in a
flexible manner: A path can be demonstrated by hand, and
corrected subsequently through providing a new path without
the need for teaching the desired path shape. This can be
useful for long or complex paths that require small or one-time
modifications. Furthermore, in situations where path shape



changes (such as grinding, where the object geometry changes
with each execution of a path) occur over time, this method
may be used to compensate for the geometry changes.

D. Future Work

More testing of the path recognition with different paths is
needed in order to determine the scope of the required variance
in path shapes for generating a path library capable of classify-
ing path demonstrations in most use cases. More investigation
into the use of synthetically generated path models for classi-
fying human demonstrations is underway. Preliminary testing
on this has already been conducted with the proposed methods.
In addition, force values will be introduced in the Gaussian
path models to allow the path library to be used for force
controlled motion programming by demonstration. Moreover,
extending path models with time data and orientations for
the path keypoints will be investigated as well. Finally, path
segmentation – using path models in such a library as path
primitives – will be investigated in the future.

VI. CONCLUSIONS

Methods for creating Gaussian path models and using those
models to classify paths by demonstration were presented in
this paper. The methods were validated through generating
a path model library from synthetically generated as well as
demonstrated path data and by using this library in the clas-
sification of generated and demonstrated paths. Results of the
testing showed that the presented methods work as intended
for both software generated paths and human demonstrations
of paths. Additionally, methods for utilizing the Gaussian
path models for robot motion programming and modifying
existing Gaussian path models were introduced. The objective
of this work is that software generated path data (such as path
data from 3-D CAD models) and human demonstrations of
paths may be used for programming precise robotic motions
intuitively with human demonstrations. The results presented
are promising and further studies will be conducted.

ACKNOWLEDGMENT

This work was supported by VTT Technical Research
Centre of Finland and the INVERSE project, funded by the
European Union, Horizon Europe research and innovation
programme (Grant Agreement 101136067).

REFERENCES

[1] Ravichandar, H., Polydoros, A. S., Chernova, S., and Billard, A. (2020).
Recent advances in robot learning from demonstration. Annual review
of control, robotics, and autonomous systems, 3(1), 297-330.

[2] J. Aleotti and S. Caselli, “Robust trajectory learning and approximation
for robot programming by demonstration,” Robotics and Autonomous
Systems, vol. 54, no. 5. Elsevier BV, pp. 409–413, May 2006. doi:
10.1016/j.robot.2006.01.003.

[3] Calinon, Sylvain. ”A tutorial on task-parameterized movement learning
and retrieval.” Intelligent service robotics 9 (2016): 1-29.

[4] K. Sugiura, N. Iwahashi, H. Kashioka, and S. Nakamura, “Learning,
Generation and Recognition of Motions by Reference-Point-Dependent
Probabilistic Models,” Advanced Robotics, vol. 25, no. 6–7. Informa
UK Limited, pp. 825–848, Jan. 2011. doi: 10.1163/016918611x563328.

[5] J. Sun et al., “Fruit flexible collecting trajectory planning based on
manual skill imitation for grape harvesting robot,” Computers and
Electronics in Agriculture, vol. 225. Elsevier BV, p. 109332, Oct. 2024.
doi: 10.1016/j.compag.2024.109332.

[6] Z. Chen and K. Fan, “An online trajectory guidance framework via
imitation learning and interactive feedback in robot-assisted surgery,”
Neural Networks, vol. 185. Elsevier BV, p. 107197, May 2025. doi:
10.1016/j.neunet.2025.107197. and Electronics Engineers (IEEE), pp.
175–185, Feb. 2023. doi: 10.1109/tmech.2022.3196036.

[7] V. Kruger, V. Tikhanoff, L. Natale, and G. Sandini, “Imitation learning of
non-linear point-to-point robot motions using dirichlet processes,” 2012
IEEE International Conference on Robotics and Automation. IEEE, pp.
2029–2034, May 2012. doi: 10.1109/icra.2012.6224674.

[8] F. Meier, E. Theodorou, F. Stulp, and S. Schaal, “Movement segmenta-
tion using a primitive library,” 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, pp. 3407–3412, Sep. 2011.
doi: 10.1109/iros.2011.6094676.

[9] R. Lioutikov, G. Neumann, G. Maeda, and J. Peters, “Probabilistic
segmentation applied to an assembly task,” 2015 IEEE-RAS 15th
International Conference on Humanoid Robots (Humanoids). IEEE, pp.
533–540, Nov. 2015. doi: 10.1109/humanoids.2015.7363584.

[10] R. Lioutikov, G. Neumann, G. Maeda, and J. Peters, “Learning move-
ment primitive libraries through probabilistic segmentation,” The Inter-
national Journal of Robotics Research, vol. 36, no. 8. SAGE Publica-
tions, pp. 879–894, Jul. 2017. doi: 10.1177/0278364917713116.

[11] T. Eiband, J. Liebl, C. Willibald, and D. Lee, “Online task segmentation
by merging symbolic and data-driven skill recognition during kinesthetic
teaching,” Robotics and Autonomous Systems, vol. 162. Elsevier BV, p.
104367, Apr. 2023. doi: 10.1016/j.robot.2023.104367.

[12] T. Eiband and D. Lee, “Identification of Common Force-based Robot
Skills from the Human and Robot Perspective,” 2020 IEEE-RAS 20th
International Conference on Humanoid Robots (Humanoids). IEEE, pp.
507–513, Jul. 19, 2021. doi: 10.1109/humanoids47582.2021.9555681.

[13] C. Song, G. Liu, X. Zhang, X. Zang, C. Xu, and J. Zhao, “Robot
complex motion learning based on unsupervised trajectory segmentation
and movement primitives,” ISA Transactions, vol. 97. Elsevier BV, pp.
325–335, Feb. 2020. doi: 10.1016/j.isatra.2019.08.007.

[14] Ginesi, Michele, Nicola Sansonetto, and Paolo Fiorini. ”Dmp++: Over-
coming some drawbacks of dynamic movement primitives.” arXiv
preprint arXiv:1908.10608 (2019).

[15] U. Ramer, “An iterative procedure for the polygonal approximation
of plane curves,” Computer Graphics and Image Processing, vol. 1,
no. 3. Elsevier BV, pp. 244–256, Nov. 1972. doi: 10.1016/s0146-
664x(72)80017-0.

[16] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica, vol. 10, no. 2. University of Toronto Press Inc. (UTPress),
pp. 112–122, Dec. 01, 1973. doi: 10.3138/fm57-6770-u75u-7727.

[17] M. Visvalingam and J. D. Whyatt, “Line generalisation by repeated
elimination of points,” The Cartographic Journal, vol. 30, no. 1. Maney
Publishing, pp. 46–51, Jun. 1993. doi: 10.1179/caj.1993.30.1.46.

[18] Northern Digital Inc, ”Polaris Vega XT,” ndigital.com,
https://www.ndigital.com/optical-navigation-technology/polaris-vega-xt/
(Accessed Mar. 13, 2025).


