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Abstract—We present a novel framework that integrates Large
Language Models (LLMs) with automated planning and formal
verification to streamline the creation and use of Markov Decision
Processes (MDP). Our system leverages LLMs to extract structured
knowledge in the form of a Prolog knowledge base from natural
language (NL) descriptions. It then automatically constructs an
MDP through reachability analysis, and synthesises optimal poli-
cies using the Storm model checker. The resulting policy is exported
as a state-action table for execution. We validate the framework in
three human-robot interaction scenarios, demonstrating its ability
to produce executable policies with minimal manual effort. This
work highlights the potential of combining language models with
formal methods to enable more accessible and scalable probabilistic
planning in robotics.

Index Terms—Planning under uncertainty, AI-Based methods,
human-robot collaboration.

I. INTRODUCTION

THE most advanced frontier of robotics is the creation
of machines that operate in uncontrolled environments

and react to unanticipated conditions within acceptable safety
margins. Human-robot interaction falls into this area. Humans
can be unpredictable, either because they are not entirely fo-
cussed on the task or because they exercise their free will to
change their behaviour in ways they consider more convenient.
Fortunately, there are situations in which, even though humans
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can decide freely, their decisions are heavily influenced by social
conventions. For example, in a collaborative construction task
involving two humans, the set of available actions is relatively
limited, and in most cases, one action is clearly preferable
to the others. Structured behavioural patterns such as this are
frequently modelled using probabilistic techniques.

For a robot to operate proficiently in such scenarios, it is
essential to adopt a planning framework that defines policies, i.e.,
closed-loop schemes that associate actions to the perceived state
of the system. The definition of the final goal can be complex to
specify. For instance, in collaborative robotics we may wish to
achieve the objective in a reduced time, leaving at the same time
the human co-worker with the freedom to choose their favourite
course of actions. Our objective in this paper is to derive optimal
policies of this kind from an informal specification in Natural
Language (NL).

Related Work: Markov Decision Processes (MDPs) are com-
monly used for modeling probabilistic decision making with
efficient algorithms for policy generation under full and partial
observability [1]. In robotics, MDPs have been applied in various
areas such as decision support systems [2], motion planning [3],
optimal control [4], planning under uncertainty [5], and coordi-
nated multi-agent behaviour [6], including human adaptation [7]
and preference inference [8]. As a result, MDPs are widely used
in human-robot interaction [9]. A key challenge in deploying
MDPs is creating scalable models for real-time policy gener-
ation. This is difficult because human behaviour and dynamic
environments are often informally described through language,
images, or video, while MDPs require symbolic representations
for classical computation.

Reinforcement Learning (RL) [10] offers an alternative, as
it learns policies through exploration without requiring prior
domain specification. This flexibility has made RL popular
in robotics [11]. RL often faces sample inefficiency, reward
design challenges, and high computational costs. Incorporating
domain knowledge can help, though it’s rarely easily obtained
from informal sources. Large Language Models (LLMs) offer
a promising solution. Initially developed for NL understand-
ing [12], LLMs are now used for planning [13] and robotics
applications with uncertainty [14], showing excellent results,
especially with few-shot learning, which uses examples to guide
task performance [15]. Several authors propose LLMs as stan-
dalone planners [16], [17], but they lack predictable, explain-
able behaviour, especially for complex environments where
failure recovery is vital. To enhance reliability, researchers use
LLMs to generate explainable representations like PDDL [18],
a formal language for planning problems. Extensions such as
PPDDL [19] and RDDL [20] enable probabilistic reasoning
with MDP solvers. However, these languages have limited
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expressiveness and cannot fully capture the complexity of real-
world robotic environments [21].

Ontologies and KB seffectively capture human knowledge
and common sense. Their automated construction uses tools
such as OLAM [22] and interactive learning [23], although
these rely on existing plans, lack generalisation, and do not
model probabilistic aspects. LLMs offer a scalable solution,
synthesising KBs for various scenarios [24].

Logic-based knowledge representations have been used in
robotics for planning and automated reasoning [25]. Probabilis-
tic Logic Programming (PLP) [26] adds uncertainty to these
representations. For example, distributional clauses [27] facil-
itate the creation of a probabilistic Monte Carlo planner [28].
However, logic knowledge bases require a complete domain
specification. Similarly, the inference mechanism of ProbLog
addresses MDPs with value iteration [29], but also requires a
fully specified domain. In [30], LLMs are combined with the
explainability and reasoning capabilities of logic programming,
but it only supports deterministic planning, lacking the proba-
bilistic aspect of human–robot interaction.

Paper Contribution: The objective of this paper is to develop
an open-source framework1 for generating probabilistic policies
from an informal narrative that describes a robotic scenario.
In this work, a scenario refers to a specific scene (e.g., an
intersection involving humans and autonomous agents) that we
describe in NL and utilise as part of the input. The high-level
textual narratives that describe the process or scenario and its
desired behaviours are provided by domain experts interacting
with the front end of the system, unaware of the underlying
system functionality. The system constructs, on the back end, a
logical knowledge-base (KB) that encodes entities and actions as
predicates. Such KBs are human-readable by system designers
and support inference of new facts using logical connectives.
The role of system designers is to verify the correctness of the
generated KB and tailor the LLM output to the specific problem
through methods such as few-shot prompting or fine-tuning.
Inspired by PLP, our method links probabilities to predicates to
automatically construct an MDP, which a state-of-the-art solver
processes to generate a policy. Our framework is designed to
augment, not replace, human expertise: domain experts provide
high-level conceptual narratives, while system designers ensure
formal correctness. The system’s interpretable knowledge base
enhances productivity, transparency, and trust by allowing ex-
perts to inspect and verify its decisions. We demonstrate the
efficacy of the framework in three use cases, chosen as repre-
sentative paradigms of a broader class of applications in which
robots operate in uncertain environments. The results show that:
i) a KB can be efficiently derived from NL text, and ii) the
resulting MDP yields effective policies suitable for industrial
applications.

II. BACKGROUND

Planning: We take inspiration from the STRIPS classical
planning problem [31], which describes an action a by its
preconditions pre(a), which must be satisfied in the current state
to be executable, and its effects eff(a), which encode the result
of its execution. Taking the lines of PPDDL [19], we consider
an action to have more than one effect eff(a)i associated with
a probability Pi ∈ [0, 1] of being applied, such that

∑
i Pi = 1.

1https://www.github.com/idra-lab/prolog_mdp

Assuming a finite set of objects, the predicates and the set of
actions induce an MDP [32].

MDPs and Policies: An MDP is a mathematical frame-
work for modelling sequential decision-making problems in
environments characterised by stochasticity. It can be described
with a 4-tuple 〈S, s0,A,P,R〉, where: S = {s1, . . . , sN} is a
finite set of states representing descriptions of the system; s0 ∈ S
denotes the initial state: A = {a1, . . . , aM} is a finite set of ac-
tions that cause transitions between states; Pa(s, s

′) (transition
probability relation) describes the probability of moving from
state s to state s′ given action a; R is a reward function R(s, a)
that assigns a value for executing action a in state s.

Given an MDP and a probabilistic temporal property, a policy
can be synthesised, which is a mapping of states to actions such
that the trajectories (sequences of states satisfying the transition
probability relation) satisfy the property [33].

Prolog: Prolog is a logic programming language, applied
in fields like computational linguistics [34] and AI and
robotics [35]. It uses predicates and logic-based rules for sym-
bolic reasoning on simpler facts stored in a KB.

III. PROPOSED FRAMEWORK

Fig. 1 visually represents the different blocks comprising our
framework, all of which are described in detail below.

Knowledge-base: In our framework, we use Prolog2 to for-
mally specify a KB that stores: a) The initial state s0 of the MDP,
defined as a list of predicates. b) Grounded predicates that char-
acterise the scenario presented in the input query, i.e., immutable
characteristics such as different types of agents, e.g., a robotic
arm or a wheeled robot. c) The actions that can be executed to
transition from one state to another. d) The reward function to
score the transitions. e) Auxiliary functions to write the MDP
in the PRISM formalism (Fig. 2) [33]. The Prolog predicates
for reward functions are divided into two categories: necessary
and sufficient. The former must be satisfied for the transition to
be valid; if even one of them fails, the reward is set to a fixed
value to discourage the agent from selecting actions leading to
undesired states. If all necessary conditions are satisfied, the final
reward is computed by adding the contributions of the sufficient
conditions that match the transition. Thus, the reward function
is used both to prevent invalid transitions and to promote desired
behaviours. The reward functions are pure Prolog code that the
LLM generates.

KB Generation: This step is performed using an LLM via few-
shot prompting (Section II). The LLM takes as input both the NL
description of the domain elements (Fig. 3), and a set of curated
examples, containing some general examples (Fig. 4) and others
that are use-case-specific (Figs. 5 to 7). The former are used to
give a high-level description of how the LLM has to generate the
KB, including both how the desired output should be structured
and some focal rules that will be used to correctly parse the NL
description in order to generate a correct and coherent KB. The
Python parser requires the LLM output to contain Markdown-
like tags that allow for easily parsing the output and capturing
the required information. The tags are kb (Fig. 5), actions
(Fig. 6), and rewards (Fig. 7).

The general examples describe technical aspects, for example,
how an action should be structured, as in using the predicate
action with arguments the name with the action arguments,

2SWI-Prolog https://www.swi-prolog.org/.
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Fig. 1. General diagram of the framework. Given an NL description of the query, it generates a Prolog KB through few-shot prompting with an LLM. The KB
is used to extract a PRISM MDP, which Storm uses to synthesize an optima policy. The policy can then be used to execute actions.

Fig. 2. An example of an auxiliary function to generate the PRISM variables:
there are three pillars, P1, P2, and P3, which are integers and can have a value
between 0 and 4, plus the reward value which is defined as an integer.

Fig. 3. Example of a query passed as input to the LLM to generate the MDP.

Fig. 4. An example of how the output from the LLM should be formatted.

Fig. 5. An answer used as example for the LLM, containing how to generate
the KB from the query shown in Fig. 3.

and the lists of preconditions and effects, how the initial state
should be formatted, i.e., as a list contained in the predicate
initial_state, and the labels for Storm, since we want to
either maximize the probability of success of a label or minimize
the reward value.

The use-case-specific examples define how the NL should be
converted into a KB for that specific task. To provide the LLM
with this information, we break down the query and examples
into different parts, each corresponding to the components of
an MDP: the actions, the reward, and the states. The examples
explain both how the KB shall be formatted (see Figs. 5 to 7),
and also include counterexamples that illustrate wrong mod-
elling choices. In Fig. 5, we see that the LLM shall generate
the initial state in the PRISM formalism, as well as the other
predicates, e.g., get_state and get_printable_state

Fig. 6. An answer used as example for the LLM, containing how to generate
the actions. The query contains both the KB (Fig. 5) and the NL text (Fig. 3).

Fig. 7. An answer used as example for the LLM, containing how to generate
the rewards functions from the NL text. The query for this answer contains the
previously generated KB, actions and the NL description shown in Fig. 3.

that are problem dependent and hence must change depending
on the input query.

The LLM generates all the components of the KB: initial state,
grounded predicates, actions, reward functions, and auxiliary
functions to generate the PRISM file. These parts of the KB
are produced in multiple steps and, to ensure consistency in
the terminology and structure of the predicates, the framework
feeds back the previously generated information into the prompt
at each subsequent step. We adopted this incremental approach
rather than generating the entire KB in a single pass, as prelimi-
nary experiments indicated that it would provide more accurate
and coherent outputs from the LLM. For example, we begin with
the query presented in Fig. 3, which is then passed to the LLM
along with a series of examples. The LLM returns a well-formed
output containing the KB within the tags kb, which is then
parsed and fed-back to the LLM with the same original query,
and we ask the LLM to generate the actions. As in the previous
step, we extract the relevant part for the actions from the output
and then ask the LLM to generate the final part for the rewards,
feeding both the KB and the actions, plus the original query.

Importantly, the reward functions are automatically generated
by the LLM. Drawing on its internal knowledge and the few-
shot examples, the model not only infers the appropriate reward
structure for the given scenario but also distinguishes between
necessary and sufficient conditions. As mentioned before, the
formers correspond to constraints not to be violated, whereas
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the latter correspond to desirable but non-mandatory objectives.
This classification is entirely handled by the model during the
reward generation step, based on the patterns and instructions
provided in the examples and its internal logic.

Finally, a human operator is in charge of checking the quality
of the produced KB and eventually fixing the mistakes.

MDP Generator: This module, implemented in Prolog, gen-
erates the MDP from the KB and the specific query with the
following four steps.

Step 1. Graph generation: The MDP generator module com-
putes a graph G = 〈S,E〉 starting from an initial state corre-
sponding to the initial condition. The set of nodes S comprises
all possible states of the MDP, and the edges E correspond
to the transitions: each transition (edge) is associated with an
action a, with the probabilistic effects Ei ∈ eff(a) applied
during the transition, and with the corresponding probability
Pi. The algorithm recursively checks if an action a from the
action space A can be executed. If, in the current state s, the
action’s preconditions pre(a) are satisfied, then the probabilistic
effects are applied, enabling the algorithm to generate new
states. This is repeated by recursively considering each set
Ei in the probabilistic effects eff(a) and by checking that
the delete effects within Ei have grounded arguments. If they
have, the effects are grounded and applied, generating one or
more new states. It is important to note that a single set of
effects Ei can transition to multiple states as the values of
the lifted predicates are recursively and exhaustively assigned.
For example, let sc be the current state in which it is possible
to apply the action a=move_block with the set of effects
Ei = add(block(B)), and let the KB contain the predicates
block(b1), block(b2). The action a fromstate sc leads
to two different states sn1, sn2, one containingblock(b1) and
the other containing block(b2). This is done by exhaustively
grounding all the lifted predicates in the lists of effects of the
action. If any of the delete effects of Ei cannot be grounded
in the current state, this means that Ei cannot be applied in
the current state (we expect them to hold in the current state;
otherwise, there is no reason to delete them). However, unlike
preconditions that prevent an action from being applied, here
we add a self-transition edge〈a,Ei〉(s, s, P ) to G. This interprets
the case as a no-op (do nothing). Upon the generation of a new
state s′, the algorithm evaluates whether it is already included
within S of G. If included, the algorithm merely adds a new
transition from s to s′. Conversely, if the state is absent, the
new state s′ is incorporated into S prior to the addition of the
transition. The function is then invoked recursively on it ensuring
a complete reachability analysis, which, therefore, ends when
every possible combination of actions, states, and grounding
possibilities has been examined.

Step 2. Generation of the Transition Probabilities: AfterGhas
been generated, the next step is to distribute the probabilities
for its transitions. The probabilities P1, . . . , Pn associated in
KB with an action’s set of effects, eff(a) = {E1, . . . , En}, do
not depend on the number of states generated by applying that
action’s effects. This means that each probability Pi must be
distributed over the possible transitions created by the action.
To perform this task, the framework does a complete traversal
of G and, for each edge, if 1) it has the same starting state, 2) it is
associated with the same action a, and 3) it originates from the
same set of effects Ei, but 4) leads to different new states, then
its probabilityPi is distributed across the created transitions. For
an illustration, see Fig. 8
and Algorithm 2. This step generates the graph G′, which
is associated with G and encodes the transition probabilities.

Fig. 8. Example of how to distribute the probability: assume that si are
the states, E1 is an effect of the action with an associated probability of 0.9.
Assuming a uniform distribution, the states s2 and s3, generated by applying
the same lifted effects E1, have the same probability of being reached; hence,
the probability 0.9 is split between the two, as shown on the right.

Algorithm 1: The MDP Generation Functions.

Algorithm 2: The transition Probabilities Refinement
Function.

For instance, consider the following toy example: the current
state has predicate position(1, 0), position(2,0),
meaning that there are two pillars that have no blocks. If we
consider the action bi, meaning that we propose a block of
type base and one of type intermediate on the tray, with prob-
abilities 0.75 and 0.25 of being taken by the user, respectively,
then the effect 0.75:[del(position(Pillar, 0)),
add(position(Pillar, 1))] corresponding to the user
choosing the block of type base, has two possible outcomes:
Pillar={1, 2}, each with probability 0.75/2, and each
leading to a different state.

Step 3. Generation of the rewards: To assign reward values
to the transitions of the MDP graph G′, we distinguish between
necessary and sufficient rewards. Necessary rewards correspond
to strict constraints that must always hold. If even one necessary
condition is violated, the transition is immediately assigned
a fixed large negative penalty, and no further conditions are
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evaluated. This ensures that behaviours violating mandatory
requirements are strongly discouraged.

If all necessary conditions are satisfied, the system then
evaluates the sufficient rewards. These represent desirable but
non-mandatory properties and contribute non-negative val-
ues (i.e., positive or zero) that accumulate when conditions
are met. The more sufficient conditions are satisfied, the higher
the reward of the transition. This formulation allows us to sep-
arate hard constraints from soft preferences, enabling policies
that are both correct and optimised for user-specified objectives.

For example, consider the structure building scenario with
the policy “Build the pillars by layers, while maximizing the
user’s freedom”. The requirement that no two pillars differ in
height by more than one block constitutes a necessary reward:
any violation results in a severe negative penalty. Conversely,
providing the user with blocks that differ from one another
represents a sufficient reward: its fulfillment yields a positive
bonus, but its absence does not incur any penalty.

Step 4. PRISM Script Compilation: The compilation of the
graph G′ into a PRISM script is performed in three steps. First,
the PRISM header is created using the LLM-generated strings
as auxiliary functions for variable initialisation (see Paragraph
Knowledge-base in Section III). Second, the transition model
is built by traversing the graph (as an MDP) and generating
the transitions, formatted using the LLM-generated predicates.
Finally, it reports the labels generated by the LLM from the the
NL input, and the complete MDP is saved in a file for processing
by Storm. As mentioned earlier, the LLM system generates
two labels for the MDP: one to maximize the probability of
success (doneP) and another to minimize the reward (doneR).
This distinction exists because the optimal final state may differ
depending on the objective. For example, in the blocks-world
use-case, both labels coincide since the task requires all three
pillars to be built. In contrast, the AGV use-case has different
labels: doneP requires reaching the final section without emer-
gency stops, while doneR focuses on reaching it as quickly as
possible, regardless of stops. When compiling Storm, it is up to
the user to choose which label is more appropriate, depending on
whether they want to prioritize the successful execution of the
task (doneP), or whether they want to optimize a reward value
doneR. The two labels are Storm functionalities, which will
then be used in the model checker to find the optimal solution
for the provided label.

Policy synthesis and execution: A policy for a given property
is synthesized using the Storm solver [36]. Storm provides a
Python wrapper for easy integration. To obtain a policy from
Storm, specify an optimization goal as a property. The common
property is Pmax=? [F “doneP”], which asks Storm to find
a policy maximizing the expected probability of reaching states
where “doneP” holds. For reward optimization, minimizing
the reward is achieved by setting the property to: Rmin=?
[F “doneR”]. The synthesized policy is stored as a state-
action table, which can be implemented in any robotic runtime
environment, such as the adopted ROS2.

IV. USE-CASES AND EXPERIMENTS

In this section, we present three use-cases on which we tested
the system. For each, we first outline the scenario, then provide
a detailed explanation of the implementation and a description
of the devised experiments. We carried out five tests for each
use-case to validate the framework’s ability to generate a correct
policy and to highlight the generalisation capabilities of the
domain generation step.

Fig. 9. Experimental setup for the blocks-world scenario.

A. Structure Building

Inspired by the blocks-world scenario [37] widely used in
task planning, we devised a proof-of-concept scenario in which
a human agent and a robotic manipulator cooperate to construct
a structure. The use-case was tested both in simulation and in a
real execution environment.

Problem description: A human operator must build N towers
using different blocks (orange rectangle in Fig. 9). A robotic
manipulator places the blocks on a tray (red rectangle) at prede-
fined positions, all reachable but at varying distances from the
human’s hands, hence with increasing probability of choosing a
block based on proximity. The operator selects one block from
the tray, discarding the others. The robot can draw any block
from an infinite storage area (blue rectangle).

KB: Fig. 10 shows an excerpt of the KB for the scenario.
Fig. 10 illustrates the initial state with no blocks on pillars.
The right side displays an action placing two top blocks (t)
and one intermediate block (i) on the tray, with the top blocks
nearer to the human. An action includes a name with arguments,
preconditions, and probabilistic effects. The tti action needs
at least a pillar of height 2 or 1.

Reward value: We want to encourage freedom of choice,
hence the reward values are chosen so that the system encourages
diversity of the blocks in the tray (as far each block corresponds
to an admissible choice).

Experiments: We performed five tests for this use-case:
1) There are a total of 3 types of blocks and the robotic arm
places 3 blocks on the tray. The operator has to create 3 towers
picking blocks from the provided ones. This case is the one we
also used in the examples for the LLM. 2) The probabilities
of picking the blocks on the tray are changed with values not
present in the examples. 3) The number of pillars increases to
five. 4) The number of block types increases to four, and the
number of pillars reduces to two. 5) We considered two pillars,
three types of blocks, and a new action that can be executed only
at the end to place an architrave on top of the pillars. Tests are
conducted to highlight the ability of the framework to generalise
in the scenario and extract consistent policies.

Real-world experiment: Once the state-action table is ex-
tracted, it can be used in any ad-hoc system. We developed a
ROS2 workspace to conduct real-world experiments.

B. Traffic Management of AGVs in an Industrial Scenario.

Problem description: An Autonomous Guided Vehicle (AGV)
must navigate a factory floor, each route is divided into sections
and in each section there are workers who might disrupt its path.
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Fig. 10. Initial state (left): no block has been placed. An example of actions (right) with the list of preconditions and effects.

Fig. 11. Initial state (left): AGV is at starting state without any emergency stop and delay. An example of actions (right) in which the predicates to verify plays a
crucial role to also compute the probabilities of the different effects.

More workers increase the chance of emergency stops to prevent
collisions. The objective is to traverse all sections without stops.
The AGV has two actions: wait, which slows down to avoid
crashes but delays the task, or proceed, which moves ahead
without delay, risking an emergency stop. If the AGV stops, it
ends negatively, as indefinite waiting causes delays that reduce
factory efficiency.

KB: The initial state includes three predicates: tracking the
section, reporting an emergency stop, and expressing delay (left
of Fig. 11). Two actions model this use-case by evaluating
predicates to determine effect probabilities, incrementing the
section, and increasing the delay.

Reward value: The goal is to reduce the likelihood of en-
tering emergency stop mode while ensuring factory efficiency.
Mandatory properties in the NL text include human safety,
while optional ones like minimizing time spent in a section help
compute reward values. The reward function penalizes AGV
emergency stops, and rewards for transitions without stops are
inversely related to accumulated delay.

Experiments: For this use-case, we rely on simulation to
validate the proposed approach since we have no access to the
necessary hardware and resources. We considered the following
scenarios.

1) There are a total of 5 sections that the robot has travel
across. The two only actions that it can do are: wait and
proceed, as aforementioned.

2) It extends the first test by increasing the section number
to 10 sections in total.

3) It decreases the delay caused by the wait action by 15.
4) It combines the second and third tests together, and also

changes the wait action. The robot now stops and it can
only advance to the next section if proceed is called.

5) A third previously unseen action, namely speed-up,
has to be generate by the LLM. This action increases the
velocity of the AGV setting the delay to 0, but it also
increases the probability of an emergency stop. proceed
now allows for moving to the next section with a reduced
probability of collision.

C. Gripper Domain

In the gripper domain [38], a robot with two grippers moves
balls between rooms. This domain tests our system’s generali-
sation, serving as a balance between the first two use-cases by
considering different settings with probabilistic actions, multi-
stage transitions, resource constraints, and value prioritization.

1) A robot with two grippers moves 3 balls from Room A to
Room B. The move is certain, but picking succeeds at 0.9,
and dropping at 0.95.

2) Two labelled balls are involved: one is in Room A, the
other is in Room B, requiring return to Room A before
delivery. Movement succeeds at 0.98, picking at 0.88, and
dropping at 0.94.

3) In a three-room setup, the robot moves balls from Room
A through a Corridor to Room B. Initial setup includes 2
balls in Room A and 2 in the Corridor. Move success is
0.97 from Room A to Corridor, and 0.95 from Corridor to
Room B. Picking succeeds at 0.90, dropping at 0.93.

4) Energy is limited: 4 fragile balls need delivery with 10
energy units. Each move, pick, or drop uses 1 unit of
energy. Pick and drop success rates are 0.92 and 0.97.
Task fails if energy depletes before completion.

5) Delivery prioritization has 4 balls in Room A, with 2 as
high-value. Movement is certain. High-value balls pick
at 0.85, drop at 0.90; standard balls pick at 0.90, drop at
0.96. Carrying both high-value balls reduces drop success
by 0.03.

D. Implementation Details and Experimental Setup.

All experiments were executed on a desktop PC running
Ubuntu 22.04 with an AMD Ryzen 7 7700X CPU and 64 GB
of DDR5 memory. We used Swipl version 9.2.9, and stormpy
version 1.9.0. For the generation of the KB, we used GPT-4o
and GPT-5-mini as the LLM. To reducestochasticity, we set
the temperature to 0 and fixed the seed (to 42) beforehand.
Although this choice does not produce repeatable behaviours, it
significantly alleviates the unpredictability of the LLM.

V. EXPERIMENTAL RESULTS

We analyse the results obtained in the three domains described
in Section IV. Table I presents results for the various steps of
our framework, while Table II shows policy execution.

A. KBGeneration

The results in Table I show promising generalisation abilities
from the LLM, demonstrated across 3 different domains.

Structure Building: The LLM generated the correct KB in
all the five cases, across varying numbers of pillars, blocks
and sections. The examples used for the few-shot prompt were
similar to the tested use-case. Notably, it correctly formulated
the action to place the architrave on top of the pillars, an action
that can be executed only at the end in Case 5.

Agv: The LLM was able to generate consistent KBs from the
examples. Only one error occurred in scenario 4, in which the
LLM added an additional non instantiated predicate to the verify
predicate list. This is considered a minor error, since the Swipl
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TABLE I
RESULTS OF THE EXPERIMENTS ON THE PROPOSED USE-CASES AVERAGED OVER 100 TRIALS. IN KB GENERATION, WE REPORT�IF THE LLM OUTPUT WAS

CORRECT, OR WE USE X(N,M), WHERE N IS THE NUMBER OF LOGICAL ERRORS AND M THE NUMBER OF CORRECTIONS. MDP EXTRACTION SHOWS THE

TIME TO GENERATE THE MDP, REFINE PROBABILITIES (SECTION III), AND WRITE TO FILE. POLICY EXTRACTION REPORTS THE AVERAGE TIMES (OVER 10000
RUNS) TO EXTRACT THE OPTIMAL POLICY FOR PROBABILITY MAXIMISATION (TOP) AND REWARD MAXIMISATION (BOTTOM).

TABLE II
SIMULATION RESULTS. FOR THE STRUCTURE BUILDING USE-CASE, WE SHOW

THE TOTAL NUMBER OF ACTIONS AND THE NUMBER OF ACTIONS THAT

PROPOSE 2 OR 3 EQUAL BLOCKS. FOR THE AGV USE-CASE, WE COMPARE THE

OPTIMAL POLICY WITH A FAULTY ONE IN WHICH THERE IS A PROBABILITY

pf = 0.4 OF CHOOSING THE WRONG ACTION.

interpreter immediately identified the error, and the correction
consisted in removing such predicate from the list.

Grippers: The LLM generated the correct KB in three out
of five cases, without any new example. The errors committed
by GPT-4o were not conceptual errors, but rather simple syntax
mistakes that could be easily detected and corrected by an expert.
For instance, in both Case 4 and 5, the error consisted in using
ball3 instead of ball3_position. Such errors could also
be automatically identified and corrected by integrating syntax
and and consistency-checking tools [39].

Finally, given the nature of the observed errors, we also
conducted additional tests using GPT-5-mini. This model exhib-
ited improved generalisation capabilities and achieved a perfect
score in the generation of the KB, confirming the robustness and
scalability of our approach.

B. MDP and Policy Extraction

The results of the generation of the MDP and for the extraction
of the policy are shown in Table I. For the considered examples,
the generation of KB and MDP took a negligible time, which
allowed us to make multiple queries in a small time. This does
not mean that the framework could be used for online generation
in industrial scale applications.

Overall, performance varies significantly with the complexity
of the MDP, i.e., the number of states and actions. The framework
solves the tests for the AGV use-case–which includes between
35 and 189 states and 2 or 3 actions–consistently faster than the
tests for the structure building use-case, which ranges from 17
to 1024 states and 16 or 27 actions. Notably, the time required

to refine transition probabilities increases with the number of
available actions per state. This factor has a substantial impact,
often dominating the total computation time (Table I). Extracted
policies respect the criteria written in the input queries both
when maximising the probabilities of success or minimising the
reward values.

C. Policy Execution

To provide a brief evaluation of policy behaviour, we tested
the framework in three representative scenarios. In the structure
building task, the probability-maximising policy doneP often
used repeat block combinations (over 75% duplicates in test 1),
while the reward-oriented policy doneR created more diverse
sets, demonstrating our approach’s ability to bias policies toward
reliability or diversity. In the AGV use case, the probability-
maximising policy consistently achieved goals under ideal con-
ditions (100% success in tests 1–3) and performed well under
faults (over 80% success), though its performance decreased in
tests 4–5 due to limited action effectiveness. Conversely, the
reward-minimising policy struggled even without faults, with
faults further reducing success, highlighting its fragility. These
experiments show that our framework supports different optimi-
sation objectives and exposes their trade-offs in robustness and
diversity.

Real-World Experiment: In the real-world experiment, we
used a UR5e robotic arm, equipped with a 2-finger soft gripper
(Fig. 9), and involved a total of four subjects, including two
authors and two additional participants, each of whom com-
pleted the test twice. In the first round, the user was instructed
to build three pillars using blocks from the robotic arm. In the
second round, they were informed of the building policy, i.e.,
building by layer. All participants successfully constructed the
structure each time, confirming the correctness and robustness
of the extracted policies. A video of the experiment can be found
in the multimedia material.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented a complete framework that au-
tomates the generation of MDP policies from natural lan-
guage queries. The proposed approach leverages state-of-art
prompt-engineering techniques to construct a Prolog KB, which
is subsequently used to derive an MDP and its correspond-
ing policy through Storm. The resulting policy can be conve-
niently stored in a state–action table, enabling straightforward
deployment in real-world scenarios. Overall, this study pro-
vides a foundational step toward integrating natural language
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interfaces with formal decision-making frameworks, paving the
way for more accessible and adaptive autonomous systems.

Despite its promising results, the framework has several lim-
itations. The most critical limitation arises from LLMs inher-
ent tendency to generate incorrect or inconsistent outputs. At
present, the system does not include an automated mechanism
for error detection or correction, and therefore primarily func-
tions as a support tool for domain experts. Future work will
focus on introducing a feedback loop for self-correction when
the parser fails or after MDP analysis. Additionally, employ-
ing LLM ensembles or fine-tuned domain-specific models may
help mitigate such inaccuracies. A second limitation concerns
the LLM’s inability to autonomously infer action probabilities,
which currently requires expert intervention. To address this, we
are investigating methods to estimate these probabilities from
prior task demonstrations, such as video data or raw sensory
inputs. Furthermore, while the framework is designed for expert
users, its initial learning curve can be steep. We are developing
comprehensive usage guidelines, prompt templates, and an in-
tuitive user interface to improve accessibility and usability. An-
other challenge involves the generation of few-shot examples to
guide the LLM in creating effective knowledge bases. Although
the model demonstrates strong generalisation capabilities across
domains, curating high-quality examples remains essential for
robust performance. To this end, we are preparing standardised
templates and documentation to facilitate this process. As future
work, we also aim to extend the framework to support partially
observable MDPs and hidden Markov models, thereby enhanc-
ing its ability to model uncertainty and improve interaction with
human operators.
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